null

Graphene Publication List

ARTICLE REFERENCE PRODUCTS DOI
Optimization of Graphene infused Natural Rubber Sensing Film and Polydimethylsiloxane for Flexible Pressure Sensor Vishnukumar Rajandran, “Optimization of Graphene infused Natural Rubber Sensing Film and Polydimethylsiloxane for Flexible Pressure Sensor”, IJNeaM, vol. 16, no. December, pp. 371–383, Dec. 2023. Graphene nanoplatelet (GNP) DOI: https://doi.org/10.58915/ijneam.v16iDECEMBER.418
Hypercrosslinked Phenothiazine Polymeras a Low-Costand Durable Organic Cathode for Rechargeable Lithium Batteries Bildirir, H., Alván, D., Patil, N., de la Peña O’Shea, V. A., Liras, M., & Marcilla, R. (2023). Hypercrosslinked Phenothiazine Polymer as a Low-Cost and Durable Organic Cathode for Rechargeable Lithium Batteries. ACS Applied Polymer Materials. Reduced graphene oxide and single-walled carbon nanotubes(SWCNT) https://doi.org/10.1021/acsapm.3c01845
Fully flexible impedance-based pressure sensing via nanocomposites of polyvinyl alcohol filled with multiwalled carbon nanotubes, graphene nanoplatelets and silver nanoparticles Sekertekin, Y., Gokcen, D. Fully flexible impedance-based pressure sensing via nanocomposites of polyvinyl alcohol filled with multiwalled carbon nanotubes, graphene nanoplatelets and silver nanoparticles. J Mater Sci: Mater Electron 34, 2243 (2023). Multiwalled CNTs (purity: > 96%, outside diameter: 10–20 nm), GNPs (purity: > 99.9%, size: 3 nm) and Ag NPs (purity: > 99.995%, size: 18 nm) https://doi.org/10.1007/s10854-023-11663-5
Floroetilenpropilen (FEP)/Grafen Hidrofobik Kaplamaların Üretim Parametrelerinin Optimizasyonu ÖZAKIN, B., PEHLİVAN, M., & ACER, O. D. (2023). Optimization of Manufacturing Parameters for Fluorinated Ethylene Propylene (FEP)/Graphene Hydrophobic Coatings. Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri Ve Uygulamalı Bilimler Dergisi, 6(2), 110-117. Nanosized graphene (5 nm thickness, 30 µm diameter) DOI:10.53448/akuumubd.1321014
Thermal Energy Storage Efficacy and Buffering Effect of Liquid Polyethylene Glycol in Core-Shell Polycarbonate and Reduced Graphene Oxide Fibers Das, M., Ura, D. P., Szewczyk, P. K., Berniak, K., & Stachewicz, U. Thermal Energy Storage Efficacy and Buffering Effect of Liquid Polyethylene Glycol in Core-Shell Polycarbonate and Reduced Graphene Oxide Fibers. Available at SSRN 4646107. Reduced graphene oxide (rGO) http://dx.doi.org/10.2139/ssrn.4646107
Effects of graphene doping on shape stabilization, thermal energy storage and thermal conductivity properties of PolyHIPE/PEG composites Döğüşcü, D. K., Sarı, A., & Hekimoğlu, G. (2024). Effects of graphene doping on shape stabilization, thermal energy storage and thermal conductivity properties of PolyHIPE/PEG composites. Journal of Energy Storage, 76, 109804. Graphene (size: 3 nm, surface area: 800 m2·g−1, dia: 1.5 μm) https://doi.org/10.1016/j.est.2023.109804
Prediction of lap shear strength of GNP and TiO2/epoxy nanocomposite adhesives Ozankaya, G., Asmael, M., Alhijazi, M., Safaei, B., Alibar, M. Y., Arman, S., ... & Hui, D. (2023). Prediction of lap shear strength of GNP and TiO2/epoxy nanocomposite adhesives. Nanotechnology Reviews, 12(1), 20230134. GNPs and TiO2 https://doi.org/10.1515/ntrev-2023-0134
Surface properties of oriental beech wood coated with vegetable oil-based epoxide-amin nanocomposite materials after weathering Kabasakal, Y., Babahan-Bircan, İ., Baysal, E., Altay, Ç., & Toker, H. (2023). Surface properties of oriental beech wood coated with vegetable oil-based epoxide-amin nanocomposite materials after weathering. Journal of Coatings Technology and Research, 1-14. The graphene nanoplatelet (Size: 3 nm S.A: 320 m2/g Dia: 1.5, 99.9%), multi-walled carbon nanotubes (outside diameter: 4–16 nm, 96%), and fullerene C60 (95%) https://doi.org/10.1007/s11998-023-00860-w
Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review Kim, D. Y., Patel, S. K., Rasool, K., Lone, N., Bhatia, S. K., Seth, C. S., & Ghodake, G. S. (2023). Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. Science of The Total Environment, 168318. AgNPs https://doi.org/10.1016/j.scitotenv.2023.168318
Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor Dağıdır, K., & Bilen, K. (2023). Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor. Beilstein Journal of Nanotechnology, 14(1), 1041-1058. Al2O3,  graphene , CNTs https://doi.org/10.3762/bjnano.14.86
Waste-Wood-Isolated Cellulose-Based Activated Carbon Paper Electrodes with Graphene Nanoplatelets for Flexible Supercapacitors Lee, J. J., Chae, S. H., Lee, J. J., Lee, M. S., Yoon, W., Kwac, L. K., ... & Shin, H. K. (2023). Waste-Wood-Isolated Cellulose-Based Activated Carbon Paper Electrodes with Graphene Nanoplatelets for Flexible Supercapacitors. Molecules, 28(23), 7822. GnP https://doi.org/10.3390/molecules28237822
Prediction of lap shear strength of GNP and TiO2/epoxy nanocomposite adhesives Ozankaya, G., Asmael, M., Alhijazi, M., Safaei, B., Alibar, M. Y., Arman, S., ... & Hui, D. (2023). Prediction of lap shear strength of GNP and TiO2/epoxy nanocomposite adhesives. Nanotechnology Reviews, 12(1), 20230134. GNPs and TiO2 https://doi.org/10.1515/ntrev-2023-0134
Surface properties of oriental beech wood coated with vegetable oil-based epoxide-amin nanocomposite materials after weathering Kabasakal, Y., Babahan-Bircan, İ., Baysal, E., Altay, Ç., & Toker, H. (2023). Surface properties of oriental beech wood coated with vegetable oil-based epoxide-amin nanocomposite materials after weathering. Journal of Coatings Technology and Research, 1-14. The graphene nanoplatelet (Size: 3 nm S.A: 320 m2/g Dia: 1.5, 99.9%), multi-walled carbon nanotubes (outside diameter: 4–16 nm, 96%), and fullerene C60 (95%) https://doi.org/10.1007/s11998-023-00860-w
Potential use of graphene oxide as an engine oil additive for energy savings in a diesel engine Can, Ö., & Çetin, Ö. (2023). Potential use of graphene oxide as an engine oil additive for energy savings in a diesel engine. Engineering Science and Technology, an International Journal, 48, 101567. Nano-sized 2D GO sheets with 2–5 layered structures https://doi.org/10.1016/j.jestch.2023.101567
Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Erden, F. (2023). Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Composites with Enhanced Photodynamic Therapy Properties. Materials, 16(22), 7060. GO https://doi.org/10.3390/ma16227060
Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor Dağıdır, K., & Bilen, K. (2023). Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor. Beilstein Journal of Nanotechnology, 14(1), 1041-1058. Al2O3,  graphene , CNTs https://doi.org/10.3762/bjnano.14.86
Effect of graphene nanoplatelet-infused natural rubber film composite on morphology, spectral, and electrochemical properties Marlinda, A. R., Shalauddin, M., Rajandran, V., Saifizul, A. A., Azam, A. D., & Ahmad, M. I. (2023). Effect of graphene nanoplatelet-infused natural rubber film composite on morphology, spectral, and electrochemical properties. Journal of Materials Science: Materials in Electronics, 34(30), 2053. Graphene nanoplatelet (99.9%, 3 nm) https://doi.org/10.1007/s10854-023-11412-8
Fabrication and characterization of graphene-loaded recycled poly(ethylene terephthalate) electrospun composite nanofibrous mats with improved thermal conductivity Kalaoglu‐Altan, O. I., Karagüzel Kayaoğlu, B., & Trabzon, L. Fabrication and characterization of graphene‐loaded recycled poly (ethylene terephthalate) electrospun composite nanofibrous mats with improved thermal conductivity. Polymer Composites. GNPs (thickness: 3 nm, size: 1.5 μm) https://doi.org/10.1002/pc.27809
Shape stabilized microcrystalline cellulose/methyl stearate/graphene nanoplatelet composite with enriched thermal conductivity and thermal energy storage/release performance Hekimoğlu, G., Çakır, E., Sarı, A., Gencel, O., Tyagi, V. V., & Sharma, R. K. (2023). Shape stabilized microcrystalline cellulose/methyl stearate/graphene nanoplatelet composite with enriched thermal conductivity and thermal energy storage/release performance. Cellulose, 1-16. Graphene nanoplatelet (GnP, purity: 99.9%, size: 5 nm, Surface area: 135 m2/g) https://doi.org/10.1007/s10570-023-05526-9
Synthesis of graphene/silica composites and its removal efficiency of methylene blue dye from water Rind, I. K., Sarı, A., Tuzen, M., Lanjwani, M. F., & Saleh, T. A. (2023). Synthesis of graphene/silica composites and its removal efficiency of methylene blue dye from water. Inorganic Chemistry Communications, 158, 111507. Graphene nanoplatelets (GNP; 1.5 μm diameter, 3 nm size, 800 m2/g surface area, 99.9 % purity) and the silicone dioxide ((SiO2 NPs) nanoparticles (spherical. 13–22 nm size, 99.95 % purity)  https://doi.org/10.1016/j.inoche.2023.111507
Development of Graphene Based Biosensing Platforms for Label Free Bioelectronic Detection of Pathogenic Microorganisms Yuksel, S., Yilmaz, F. F., & KARA KADAYIFCILAR, P. Development of Graphene Based Biosensing Platforms for Label Free Bioelectronic Detection of Pathogenic Microorganisms. Available at SSRN 4569135. Graphene oxide (GO) https://dx.doi.org/10.2139/ssrn.4569135
Preparation of an efficient and selective voltammetric sensor based on screen printed carbon ink electrode modified with TiO2 nanoparticles for Azithromycin quantification Sopaj, F., Loshaj, F., Contini, A., Mehmeti, E., & Veseli, A. (2023). Preparation of an efficient and selective voltammetric sensor based on screen printed carbon ink electrode modified with TiO2 nanoparticles for Azithromycin quantification. Results in Chemistry, 6, 101123. Carbon material was modified with Multiwalled Carbon Nanotubes (MWCNT), Graphene Nanoplateletels (GNPL) and Titanium Dioxide Nanoparticles - TiO2 NPs (Rutile, High Puritiy: 99.99 %, Size 45 nm https://doi.org/10.1016/j.rechem.2023.101123
Physical and mechanical properties of graphene and h-Boron nitride reinforced hybrid aerospace grade epoxy nanocomposites Öztürkmen, M. B., Öz, Y., & Dilsiz, N. Physical and mechanical properties of graphene and h‐Boron nitride reinforced hybrid aerospace grade epoxy nanocomposites. Journal of Applied Polymer Science, e54639. GNP with a surface area of 800 m2g and h-BN powder https://doi.org/10.1002/app.54639
Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints ÖZBEK, Ö. Shear and Fracture Characteristics of Nano-silica and GNP Hybrid Nanoparticle Reinforced Single Lap Joints. Journal of the Institute of Science and Technology, 13(3), 1970-1982. Graphene nanoplatelet https://doi.org/10.21597/jist.1212972
Damage analysis of Nomex honeycomb sandwich structures using image processing and artificial intelligence approaches Demirci, I., & Saritas, I. Damage analysis of Nomex honeycomb sandwich structures using image processing and artificial intelligence approaches. Polymer Composites. GNPs, purity of 99.9%, a diameter of 18 μm, and a surface area of 170 m2/g. https://doi.org/10.1002/pc.27695
A phenazine-based conjugated microporous polymer as high performing cathode for aluminium-organic batteries Luzanin, O., Alván, D., Liras, M., Dominko, R., Patil, N., Bitenc, J., & Marcilla, R. (2023). A phenazine-based conjugated microporous polymer as high performing cathode for aluminium-organic batteries. Faraday Discussions. Reduced  graphene  oxide  DOI: 10.1039/D3FD00132F
Multigenerational Effects of Graphene Oxide Nanoparticles on Acheta domesticus DNA Stability Flasz, B., Ajay, A. K., Tarnawska, M., Babczyńska, A., Majchrzycki, Ł., Kędziorski, A., ... & Augustyniak, M. (2023). Multigenerational Effects of Graphene Oxide Nanoparticles on Acheta domesticus DNA Stability. International Journal of Molecular Sciences, 24(16), 12826. Graphene oxide (GO) https://doi.org/10.3390/ijms241612826
Chemically Activated Spruce Organosolv Lignin as a Carbocatalyst for Heterogeneous Oxidative Dehydrogenations in the Liquid Phase Lenarda, A., Melchionna, M., Aikonen, S., Montini, T., Fornasiero, P., Hu, T., ... & Helaja, J. (2023). Chemically Activated Spruce Organosolv Lignin as a Carbocatalyst for Heterogeneous Oxidative Dehydrogenations in the Liquid Phase. ACS catalysis, 13, 11362-11375. Reduced graphene oxide (rGO) https://doi.org/10.1021/acscatal.3c02735
Experimental investigations of aluminum hydroxide nanoparticles on properties of cementitious composites using macro and micro scale tests Şimşek, B., Uygunoğlu, T., Uğur, M., Ceran, Ö. B., & Dilmaç, Ö. F. (2023). Experimental investigations of aluminum hydroxide nanoparticles on properties of cementitious composites using macro and micro scale tests. Construction and Building Materials, 401, 132955. AHNPs , GNPs and industrial grade MWCNT https://doi.org/10.1016/j.conbuildmat.2023.132955
Investigation of the synergetic effect of hybrid fillers of hexagonal boron nitride, graphene nanoplatelets and short basalt fibers for improved properties of polyphenylene sulfide composites Aslan, C., & Karsli, N. G. (2023). Investigation of the synergetic effect of hybrid fillers of hexagonal boron nitride, graphene nanoplatelets and short basalt fibers for improved properties of polyphenylene sulfide composites. Polymer Bulletin, 1-24. Graphene nanoplatelets (average diameter: 1.5 μm, thickness: 3 nm, purity: 99.9%, specific surface area: 800 m2/g) https://doi.org/10.1007/s00289-023-04940-0
Nanographene-Doped Chalcone Derivatives of Dioxybiphenyl-Bridged Dispirocyclotriphosphazenes: Synthesis, Electrical Properties, and DFT Calculations Sirka, L., Biryan, F., Çalışkan, E., Akman, F., Koran, K., & Görgülü, A. O. (2023). Nanographene‐Doped Chalcone Derivatives of Dioxybiphenyl‐Bridged Dispirocyclotriphosphazenes: Synthesis, Electrical Properties, and DFT Calculations. ChemistrySelect, 8(28), e202300962. Nanographene (99.9 %, 5 nm) https://doi.org/10.1002/slct.202300962
The synthesis of MgO and MgO-graphene nanocomposite materials and their diode and photodiode applications Bozkurt Yildirim, G., & Daş, E. (2023). The Synthesis of MgO and MgO-Graphene Nanocomposite Materials and Their Diode and Photodiode Applications. Physica Scripta. Graphene (purity: 99.9%, size: 3 nm surface area: 800 nm, and diameter: 1.5 μm) 10.1088/1402-4896/ace249
Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions Ateş, S., & Aydın, E. B. Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions. Journal of Applied Polymer Science, e54348. Graphene nanoplatelet (99.9%, size 5 nm, dia 7 μm) and CNF (purity: >96%, diameter 190–590 nm)  https://doi.org/10.1002/app.54348
Electrical and mechanical properties of reduced graphene oxide/CuCrZr composites Kul, M., Kurt, N., Yartasi, E., & Erden, F. (2023). Electrical and mechanical properties of reduced graphene oxide/CuCrZr composites. Canadian Metallurgical Quarterly. https://doi.org/10.1080/00084433.2023.2227481
 
Reduced graphene oxide and ZrH4 powders https://doi.org/10.1080/00084433.2023.2227481
Carbon fiber reinforced poly(lactic acid) composites: Investigation the effects of graphene nanoplatelet and coupling agent addition Karsli, N. G. (2023). Carbon fiber reinforced poly (lactic acid) composites: Investigation the effects of graphene nanoplatelet and coupling agent addition. Journal of Elastomers & Plastics, 00952443231183141. GnPs https://doi.org/10.1177/00952443231183141
Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals Tserpes, K., Lagkousi, S., Tourountzi, E., & Floros, G. (2023, June). Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals. In Journal of Physics: Conference Series (Vol. 2526, No. 1, p. 012056). IOP Publishing. Graphene NanoPlatelets (GNPs) and Cellulose NanoCrystals (CNCs) doi: 10.1088/1742-6596/2526/1/012056
Optimization of thermal and hydraulic characteristics of a heat exchanger tube using ternary hybrid nanofluids with various configurations Keklikcioglu, O. (2023). Optimization of thermal and hydraulic characteristics of a heat exchanger tube using ternary hybrid nanofluids with various configurations. Journal of Thermal Analysis and Calorimetry, 1-13. GnP and Fe3O4  https://doi.org/10.1007/s10973-023-12263-5
Electrochemical reforming of a fusel oil stream from the winery industry: New insights for a circular economy based on renewable hydrogen Serrano-Jiménez, J., de Lucas-Consuegra, A., Sánchez, P., Romero, A., & de la Osa, A. R. (2023). Electrochemical reforming of a fusel oil stream from the winery industry: New insights for a circular economy based on renewable hydrogen. Fuel, 350, 128728. Graphene nanoplatelets (purity 99.9 %, particle size 1.5 µm). https://doi.org/10.1016/j.fuel.2023.128728
Çözücü Değiştirme Yöntemi ile Poli (eter eter keton) (PEEK) Kompozitlerinin Üretilmesi DEMİREL, M. Ö. Çözücü Değiştirme Yöntemi ile Poli (eter eter keton)(PEEK) Kompozitlerinin Üretilmesi. Makina Tasarım ve İmalat Dergisi, 21(1), 43-49. Grafen nanolevha https://doi.org/10.56193/matim.1137838
Fused Filament Fabricated Poly(lactic acid) Parts Reinforced with Short Carbon Fiber and Graphene Nanoparticles with Improved Tribological Properties Al Abir, A., Chakrabarti, D., & Trindade, B. (2023). Fused Filament Fabricated Poly (lactic acid) Parts Reinforced with Short Carbon Fiber and Graphene Nanoparticles with Improved Tribological Properties. Polymers, 15(11), 2451. GNP (purity 99.9% and density of 2 g/cm3) with an average thickness of 5 nm and a length of 30 μm https://doi.org/10.3390/polym15112451
Effect of using Al2O3 / TiO2 hybrid nanofluids on improving the photovoltaic performance Murtadha, T. K. (2023). Effect of using Al2O3/TiO2 hybrid nanofluids on improving the photovoltaic performance. Case Studies in Thermal Engineering, 47, 103112. Graphene, fullerene and carbon nanotubes https://doi.org/10.1016/j.csite.2023.103112
Coating graphene nanoplatelets onto carbon fabric with controlled thickness for improved mechanical performance and EMI shielding effectiveness of carbon/epoxy composites Mutlu, G., Yıldırım, F., Ulus, H., & Eskizeybek, V. (2023). Coating graphene nanoplatelets onto carbon fabric with controlled thickness for improved mechanical performance and EMI shielding effectiveness of carbon/epoxy composites. Engineering Fracture Mechanics, 284, 109271. Exfoliated graphene nanoplatelets (GNPs) with 5–10 nm average thickness, 120 m2/g specific surface area, and 5–10 μm average diameter  https://doi.org/10.1016/j.engfracmech.2023.109271
Surface Area of Graphene Governs Its Neurotoxicity Taşdemir, S., Morçimen, Z. G., Doğan, A. A., Görgün, C., & Şendemir, A. (2023). Surface Area of Graphene Governs Its Neurotoxicity. ACS Biomaterials Science & Engineering. Graphene with two different surface areas (150 and 750 m2/g) https://doi.org/10.1021/acsbiomaterials.3c00104
The technological properties of particleboards manufactured with nano additive melamine-formaldehyde adhesive Uğur, A. R. A. S., & KALAYCIOĞLU, H. (2023). The technological properties of particleboards manufactured with nano additive melamine-formaldehyde adhesive. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 24(1), 139-147. Graphene Nanoplatelet (GNP) https://doi.org/10.17474/artvinofd.1249563
Surface Modification of Pure Mg for Enhanced Biocompatibility and Controlled Biodegradation: A Study on Graphene Oxide (GO)/Strontium Apatite (SrAp) Biocomposite Coatings Yigit, O., Gurgenc, T., Dikici, B., Kaseem, M., Boehlert, C., & Arslan, E. (2023). Surface Modification of Pure Mg for Enhanced Biocompatibility and Controlled Biodegradation: A Study on Graphene Oxide (GO)/Strontium Apatite (SrAp) Biocomposite Coatings. Coatings, 13(5), 890. Graphene oxide (purity 99.8% https://doi.org/10.3390/coatings13050890
Effects of graphene nanoplatelets dispersion on the morphology of polymer nano-composites Omowole, A. A., Afolabi, D. I., Grace, K. K. M., Wilson, M. R., & Deborah, A. F. (2023, April). Effects of graphene nanoplatelets dispersion on the morphology of polymer nano-composites. In AIP Conference Proceedings (Vol. 2769, No. 1). AIP Publishing. Graphene Nanoplatelets https://doi.org/10.1063/5.0129245
CuCr NLDH-Graphene oxide blended polyvinyl chloride ultrafiltration membrane with improved permeability and antifouling behavior Mehrabani, S. A. N., Rad, T. S., Vatanpour, V., Khataee, A., Kaya, M., Zeytuncu, B., & Koyuncu, I. (2023). CuCr NLDH-Graphene oxide blended polyvinyl chloride ultrafiltration membrane with improved permeability and antifouling behavior. Separation and Purification Technology, 317, 123931. GO nanosheets https://doi.org/10.1016/j.seppur.2023.123931
Graphene oxide in palladium nanoparticle (GrafeoPlad): a new class of catalytic materials for heterogeneous catalysis Formenti, M., Pagliaro, M., Della Pina, C., & Ciriminna, R. (2023). Graphene oxide in palladium nanoparticle (GrafeoPlad): a new class of catalytic materials for heterogeneous catalysis. Graphene oxide (GO, 8 mg/mL DOI: 10.26434/chemrxiv-2023-hw1tj [opens in a new tab]open_in_new
Reinforcement of resin-modified glass-ionomer cement with glass fiber and graphene oxide Sari, F., & Ugurlu, M. (2023). Reinforcement of resin-modified glass-ionomer cement with glass fiber and graphene oxide. Journal of the Mechanical Behavior of Biomedical Materials, 142, 105850. Single-layer graphene oxide of 99.5% purity and 1 nm size https://doi.org/10.1016/j.jmbbm.2023.105850 
Align MWCNT/GNPs/PDMS based nanocomposite dry ECG electrodes for ECG recordings Öner, H., & Yüce, H. (2023). Align MWCNT/GNPs/PDMS based nanocomposite dry ECG electrodes for ECG recordings. Journal of Mechatronics and Artificial Intelligence in Engineering. AMWCNTs and GNPs https://doi.org/10.21595/jmai.2023.23201
Effects of Dispersion of Graphene Nanoplatelets on the Improvement of Thermal Properties and Morphology of Polymer Nano-Composites Adeodu, A., Daniyan, I. A., Bello, K. A., Funmilayo, A. D., Adelowo, O., & Ikubanni, P. (2023, April). Effects of Dispersion of Graphene Nanoplatelets on the Improvement of Thermal Properties and Morphology of Polymer Nano-Composites. In 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG) (Vol. 1, pp. 1-8). IEEE. GNPs DOI: 10.1109/SEB-SDG57117.2023.10124543
Synthesis Cobalt Complexed Single Chain Polymer and its Nanographene-based Composites, Electrical, Optical, and  Thermal properties Zebari, O. I. H., DEMİRELLİ, K., Zeebaree, S. Y. S., & Tuncer, H. (2023). Synthesis Cobalt Complexed Single Chain Polymer and its Nanographene-based Composites, Electrical, Optical, and Thermal properties. Graphene nanoplatelets https://doi.org/10.21203/rs.3.rs-2729633/v1
Fabrication and performance evaluation of graphene-supported PtRu electrocatalyst for high-temperature electrochemical hydrogen purification Bal, İ. B., Durmuş, G. N. B., & Devrim, Y. (2023). Fabrication and performance evaluation of graphene-supported PtRu electrocatalyst for high-temperature electrochemical hydrogen purification. International Journal of Hydrogen Energy. Graphene Nanoplatelet (GNP) https://doi.org/10.1016/j.ijhydene.2023.03.256
Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids Murtadha, T. K. Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids. Available at SSRN 4401383. Graphene, fullerene and carbon nanotubes  http://dx.doi.org/10.2139/ssrn.4401383
Hybrid based on Phenazine Conjugated Microporous Polymer as a High-Performance Organic Electrode in Aqueous Electrolytes Alván, D., Grieco, R., Patil, N., Mavrandonakis, A., Liras, M., & Marcilla, R. (2023). Hybrid based on Phenazine Conjugated Microporous Polymer as a High‐Performance Organic Electrode in Aqueous Electrolytes. Batteries & Supercaps, 6(5), e202300023. Reduced graphene oxide and single-walled carbon nanotubes https://doi.org/10.1002/batt.202300023
Viscosity of graphene in lubricating oil, ethylene glycol and glycerol Bao, J., Heyd, R., Régnier, G., Ammar, A., & Peixinho, J. (2023). Viscosity of graphene in lubricating oil, ethylene glycol and glycerol. The graphene nanoplatelets (GNP) https://doi.org/10.21203/rs.3.rs-2355507/v1
Electro-reforming of bioethanol produced by sugar fermentation on a Pt-Ni anodic catalyst supported on graphene nanoplatelets Serrano-Jiménez, J., de la Osa, A. R., Rodríguez-Gómez, A., Sánchez, P., Romero, A., & de Lucas-Consuegra, A. (2023). Electro-reforming of bioethanol produced by sugar fermentation on a Pt-Ni anodic catalyst supported on graphene nanoplatelets. Journal of Environmental Chemical Engineering, 11(3), 109703. The graphene nanoplatelets (purity 99.9%, particle size 1.5 µm). https://doi.org/10.1016/j.jece.2023.109703
Life Cycle Assessment and Cumulative Energy Demand Analyses of a Photovoltaic/Thermal System with MWCNT/Water and GNP/Water Nanofluids Dolgun, G. K., Koşan, M., Kayfeci, M., Georgiev, A. G., & Keçebaş, A. (2023). Life Cycle Assessment and Cumulative Energy Demand Analyses of a Photovoltaic/Thermal System with MWCNT/Water and GNP/Water Nanofluids. Processes, 11(3), 832. GNP and MWCNT nanoparticles https://doi.org/10.3390/pr11030832
An Electrolyte-Gated Graphene Field-Effect Transistor for Detection of Gadolinium(III) in Aqueous Media Gadroy, C., Boukraa, R., Battaglini, N., Le Derf, F., Mofaddel, N., Vieillard, J., & Piro, B. (2023). An Electrolyte-Gated Graphene Field-Effect Transistor for Detection of Gadolinium (III) in Aqueous Media. Biosensors, 13(3), 363. GO powder https://doi.org/10.3390/bios13030363
Tuned CuCr layered double hydroxide/carbon-based nanocomposites inducing sonophotocatalytic degradation of dimethyl phthalate Rad, T. S., Yazici, E. S., Khataee, A., Gengec, E., & Kobya, M. (2023). Tuned CuCr layered double hydroxide/carbon-based nanocomposites inducing sonophotocatalytic degradation of dimethyl phthalate. Ultrasonics Sonochemistry, 95, 106358. GO  https://doi.org/10.1016/j.ultsonch.2023.106358
Thermal performance analysis of aluminum, copper, and graphene nanoplatelets-doped nanocomposite heat sinks manufactured via stereolithography Şevik, S., Çiçek, B., Özdilli, Ö., Aydoğmuş, T., & Özer, Z. (2023). Thermal performance analysis of aluminum, copper, and graphene nanoplatelets-doped nanocomposite heat sinks manufactured via stereolithography. Applied Thermal Engineering, 226, 120315. Aluminum nano-powder (nano-Al), copper nano-powder (nano-Cu), and graphene nano-platelets (GnPs)  https://doi.org/10.1016/j.applthermaleng.2023.120315
Influential antimony removal from Aquatic Solution using Graphene Nanoplatelet/ Staphylococcus aureus as Novel Composite Adsorbent Rind, I. K., Sarı, A., Tuzen, M., Lanjwani, M. F., Karaman, I., & Saleh, T. A. (2023). Influential antimony removal from aquatic solution using graphene nanoplatelet/staphylococcus aureus as novel composite adsorbent. Surfaces and Interfaces, 38, 102765. GNP (purity: 99.9%) https://doi.org/10.1016/j.surfin.2023.102765
The Effect of Graphene on the Mechanical Properties of High Density Polyethylene (HDPE)/Zinc Borate Polymer Composite TAŞDEMİR, M., & ULUTAŞ, E. (2023). The Effect of Graphene on the Mechanical Properties of High Density Polyethylene (HDPE)/Zinc Borate Polymer Composite. %99.9 saflıkta olup kalınlık 5 nanometre, yüzey alanı 135 m2 /g, çap 7 µm ve yoğunluğu ise 2.27 g/cm3 Grafen DOI: 10.29109/gujsc.1237516
Reinforcement of Resin-Modified Glass-Ionomer Cement with Glass Fiber and Graphene Oxide Ugurlu, M., & Sarı, F. Reinforcement of Resin-Modified Glass-Ionomer Cement with Glass Fiber and Graphene Oxide. Available at SSRN 4372928. Single-layer graphene oxide of 99.5% purity and 1 nm http://dx.doi.org/10.2139/ssrn.4372928
Heat Transfer Enhancement by Hybrid Nano Additives—Graphene Nanoplatelets/Cellulose Nanocrystal for the Automobile Cooling System (Radiator) Yaw, C. T., Koh, S. P., Sandhya, M., Kadirgama, K., Tiong, S. K., Ramasamy, D., ... & Tan, C. H. (2023). Heat Transfer Enhancement by Hybrid Nano Additives—Graphene Nanoplatelets/Cellulose Nanocrystal for the Automobile Cooling System (Radiator). Nanomaterials, 13(5), 808. Graphene nanoplatelets (GNP) https://doi.org/10.3390/nano13050808
A high performance all-polymer symmetric faradaic deionization cell Fombona-Pascual, A., Patil, N., García-Quismondo, E., Goujon, N., Mecerreyes, D., Marcilla, R., ... & Lado, J. J. (2023). A high performance all-polymer symmetric faradaic deionization cell. Chemical Engineering Journal, 461, 142001. Reduced graphene oxide (rGO) https://doi.org/10.1016/j.cej.2023.142001
A Comparative Study of Different Poly (Lactic Acid) Bio-Composites Produced by Mechanical Alloying and Casting for Tribological Applications Abir, A. A., & Trindade, B. (2023). A Comparative Study of Different Poly (Lactic Acid) Bio-Composites Produced by Mechanical Alloying and Casting for Tribological Applications. Materials, 16(4), 1608. GNP (density of 2 g/cm3) fillers https://doi.org/10.3390/ma16041608
Assessment of Thermophysical Properties of Hybrid Nanoparticles [Graphene Nanoplatelets (GNPs) and Cellulose Nanocrystal (CNC)] in a Base Fluid for Heat Transfer Applications Sandhya, M., Ramasamy, D., Kadirgama, K., Harun, W. S. W., & Saidur, R. (2023). Assessment of Thermophysical Properties of Hybrid Nanoparticles [Graphene Nanoplatelets (GNPs) and Cellulose Nanocrystal (CNC)] in a Base Fluid for Heat Transfer Applications. International Journal of Thermophysics, 44(4), 55.  Graphene nanoplatelets (GNPs)  https://doi.org/10.1007/s10765-023-03162-w
Scalable synthesis of nitrogen and nitrogen–silicon co-doped graphene: SiC4 and SiN1C3 as new active centers for boosting ORR performance Sungur, B., Kızıl, Ç., & Bayram, E. (2023). Scalable synthesis of nitrogen and nitrogen–silicon co-doped graphene: SiC4 and SiN1C3 as new active centers for boosting ORR performance. International Journal of Hydrogen Energy, 48(46), 17512-17525. Graphene (purity 99.9%, surface area: 530 m2/g, size 3 nm, Diameter, 1.5 μ) https://doi.org/10.1016/j.ijhydene.2023.01.264
Mechanical and tribological characterization of graphene nanoplatelets/Al2O3 reinforced epoxy hybrid composites Kaykılarlı, C., Yeprem, H. A., & Uzunsoy, D. (2023). Mechanical and tribological characterization of graphene nanoplatelets/Al2O3 reinforced epoxy hybrid composites. Fullerenes, Nanotubes and Carbon Nanostructures, 31(5), 435-447. GNP powders  https://doi.org/10.1080/1536383X.2023.2173740
The synergistic effect of hybrid nano-silica and GNP additives on the flexural strength and toughening mechanisms of adhesively bonded joints Çakır, M. V. (2023). The synergistic effect of hybrid nano-silica and GNP additives on the flexural strength and toughening mechanisms of adhesively bonded joints. International Journal of Adhesion and Adhesives, 122, 103333.  Graphene nanoplatelets https://doi.org/10.1016/j.ijadhadh.2023.103333
Synthesis and characterization of PVA-based binary-gel electrolytes including massive ions Öztürk, T. P., Gelir, A., Keshtiban, N. A., Yargı, Ö., Özdemir, O. B., Mucur, S. P., & Seçgin, A. (2023). Synthesis and characterization of PVA-based binary-gel electrolytes including massive ions. Journal of Solid State Electrochemistry, 27(4), 885-894. Graphene sheets  https://doi.org/10.1007/s10008-023-05390-4
Investigation of some physical and mechanical properties of wood coated with plant-oil based epoxide nanocomposite materials Kabasakal, Y., Baysal, E., Babahan-Bircan, I., Altay, Ç., & Toker, H. (2023). Investigation of some physical and mechanical properties of wood coated with plant-oil based epoxide nanocomposite materials. Progress in Organic Coatings, 176, 107383. Graphene nanoplatelet (Size: 3 nm S.A: 320 m2/g Dia: 1.5, 99.9 %), fullerene C60 (95 %), and multi walled carbon nanotubes  https://doi.org/10.1016/j.porgcoat.2022.107383
Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry  
Asfoor, A., Aydoğmuş, Z., & Senkal, B. F. (2024). Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry. Journal of Research in Pharmacy, 28(3), 579–602. https://doi.org/10.29228/JRP.720
 
Graphene nanoplatelets (Gr; 5-10 nm; specific surface area 750 m2/g; diameter 5-10μm) and multiwalled
carbon nanotubes (MWCNT; for general purposes)
Doi Numarası: 10.29228/jrp.720
A self-powered photoelectrochemical and non-enzymatic glucose sensor based on ERGO/ZnONWs/CdS photoanode Gür, E. P., Yılmaz, Z. S. B., Dinç, S., & Demir, Ü. (2024). A self-powered photoelectrochemical and non-enzymatic glucose sensor based on ERGO/ZnONWs/CdS photoanode. Electrochimica Acta, 501, 144825. https://doi.org/10.1016/J.ELECTACTA.2024.144825
 
Graphene oxide (GO, 2.0 mgmL−1) https://doi.org/10.1016/j.electacta.2024.144825
Graphene-based material supports for Ni- and Ru- catalysts in CO2 Hydrogenation: ruling out performances and impurity role Ebrahim Atakoohi, S., Riani, P., Spennati, E., Savio, L., Vattuone, L., De Maron, J., Garbarino, G., Atakoohi, S. E., & Savio, L. (2024). Graphene-based material supports for Ni- and Ru- catalysts in CO2 Hydrogenation: ruling out performances and impurity role. ChemSusChem, e202400993. https://doi.org/10.1002/CSSC.202400993 Graphene nanoplatelet (99.9% purity), reduced Graphene Oxide (rGO, 99% purity)  https://doi.org/10.1002/cssc.202400993
Thermal energy storage performance of liquid polyethylene glycol in core–shell polycarbonate and reduced graphene oxide fibers Das, M., Ura, D.P., Szewczyk, P.K. et al. Thermal energy storage performance of liquid polyethylene glycol in core–shell polycarbonate and reduced graphene oxide fibers. Adv Compos Hybrid Mater 7, 123 (2024). https://doi.org/10.1007/s42114-024-00934-2 Reduced graphene oxide (rGO) with a surface area 1562 m2 g−1 (size ranges from 4 to 5 µm)  https://doi.org/10.1007/s42114-024-00934-2
Thermal energy storage performance of liquid polyethylene glycol in core–shell polycarbonate and reduced graphene oxide fibers Das, M., Ura, D.P., Szewczyk, P.K. et al. Thermal energy storage performance of liquid polyethylene glycol in core–shell polycarbonate and reduced graphene oxide fibers. Adv Compos Hybrid Mater 7, 123 (2024). https://doi.org/10.1007/s42114-024-00934-2 Reduced graphene oxide (rGO) with a surface area 1562 m2 g−1 (size ranges from 4 to 5 µm) https://doi.org/10.1007/s42114-024-00934-2
Effect of Functionalized Graphene Nanoplatelet Dispersion on Thermal and Electrical Properties of Hybrid Carbon Fiber Reinforced Aviation Epoxy Laminated Composite Bilgi, C., Demir, B., Aydın, H., Üstün, B., & Kurtan, Ü. (2024). Effect of Functionalized Graphene Nanoplatelet Dispersion on Thermal and Electrical Properties of Hybrid Carbon Fiber Reinforced Aviation Epoxy Laminated Composite. Materials Chemistry and Physics, 129702. https://doi.org/10.1016/J.MATCHEMPHYS.2024.129702 Graphene nanoplatelets (GNPs) and Sodium Dodecyl Sulfate (SDS) https://doi.org/10.1016/j.matchemphys.2024.129702
Development of a Flexible Porous GNP-PDMS Composite: Tunable Thermal and Electrical Properties for Novel Applications Hejazi, MA., Trabzon, L. Development of a Flexible Porous GNP-PDMS Composite: Tunable Thermal and Electrical Properties for Novel Applications. Appl Compos Mater (2024). https://doi.org/10.1007/s10443-024-10246-9 graphene nanoplatelets (GNP) with a diameter of 24 μm, thickness of 6 nm, and specific surface area of 150 m2/g  https://doi.org/10.1007/s10443-024-10246-9
Failure analysis of adhesively bonded joints using a modulatory damage model Khabaz-Aghdam, A., Dizaji, S. A., Choupani, N., & da Silva, L. F. M. (2024). Failure analysis of adhesively bonded joints using a modulatory damage model. Engineering Failure Analysis, 163, 108602. https://doi.org/10.1016/J.ENGFAILANAL.2024.108602 Reduced graphene oxide powder https://doi.org/10.1016/j.engfailanal.2024.108602
Increasing the Production of High-Quality Graphene Nanosheet Powder: The Impact of Electromagnetic Shielding of the Reaction Chamber on the Tiago Torch Plasma Approach Morales-Calero, Francisco Javier and Cobos-Luque, Antonio and Blázquez-Moreno, Jesús Manuel and Raya, Andrés María and Rincón, Rocío and Muñoz, José and Benítez, Almudena and Mendoza-González, Norma Yadira and Alcusón, Jorge Alberto and Caballero, Alvaro and Calzada, María Dolores, Increasing the Production of High-Quality Graphene Nanosheet Powder: The Impact of Electromagnetic Shielding of the Reaction Chamber on the Tiago Torch Plasma Approach. Available at SSRN: https://ssrn.com/abstract=4876182 or http://dx.doi.org/10.2139/ssrn.4876182 Commercial graphene nanoplates  http://dx.doi.org/10.2139/ssrn.4876182
Composites of Titanium–Molybdenum Mixed Oxides and Non-Traditional Carbon Materials: Innovative Supports for Platinum Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells Ayyubov, I., Tálas, E., Borbáth, I., Pászti, Z., Silva, C., Szegedi, Á., Kuncser, A., Yazici, M. S., Sajó, I. E., Szabó, T., & Tompos, A. (2024). Composites of Titanium–Molybdenum Mixed Oxides and Non-Traditional Carbon Materials: Innovative Supports for Platinum Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Nanomaterials, 14(12), 1053. https://doi.org/10.3390/NANO14121053/S1
 
Graphene nanoplatelets (GNP, 750 m2/g https://doi.org/10.3390/nano14121053
Investigation of Mechanical and Tribological Properties of Al7075-Al2O3-GNPs Hybrid Composites Produced by Powder Metallurgy and Induction Hot Pressing Işik, E., Taşkin, A. & Şenel, M.C. Investigation of Mechanical and Tribological Properties of Al7075-Al2O3-GNPs Hybrid Composites Produced by Powder Metallurgy and Induction Hot Pressing. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09685-z Al7075 aluminum alloy, Al2O3, and graphene powders https://doi.org/10.1007/s11665-024-09685-z
Graphene oxide in palladium nanoparticle (GrafeoPlad): A new class of functional materials Formenti, M., Pagliaro, M., Della Pina, C., & Ciriminna, R. (2024). Graphene oxide in palladium nanoparticle (GrafeoPlad): A new class of functional materials. Green Synthesis and Catalysis.https://doi.org/10.1016/j.gresc.2024.04.0044
 
Aqueous solution of GO (8 mg/mL https://doi.org/10.1016/j.gresc.2024.04.004
Tribological Behaviours of Fe-Graphene Composites
Bektas, S., Akif Erden, M., Nusret Tanrıverdi, A., & Akgul, Y. (n.d.). Tribological Behaviours of Fe-Graphene Composites.
 
Graphene nanoplatelets (5-8 nm diameters and 750 m2 /g surface areas) and graphite powder (%96.5 purity andUDCS'19 Fourth International Iron and Steel Symposium
Physical, mechanical, and surface properties of Oriental beech coated with bio-based epoxide nano-coatings after weathering Altay, Ç., Babahan-Bircan, İ., Toker, H. et al. Physical, mechanical, and surface properties of Oriental beech coated with bio-based epoxide nano-coatings after weathering. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-024-00951-2 Fullerene C60 (95%) and multiwall carbon nanotubes (outside diameter: 4–16 nm, 96%) as well as the graphene nano-platelet (size: 3 nm) https://doi.org/10.1007/s11998-024-00951-2
The Effect of Functionalized Graphene Nanoplatelet Dispersion on the Physical Properties of Carbon FiberReinforced Aviation Epoxy Composite Bilgi, Cahit and DEMİR, Bilge and Aydın, hamie and KURTAN, Ümran and Üstün, Burcu, The Effect of Functionalized Graphene Nanoplatelet Dispersion on the Physical Properties of Carbon Fiber-Reinforced Aviation Epoxy Composite. Available at SSRN: https://ssrn.com/abstract=4841699 or http://dx.doi.org/10.2139/ssrn.4841699 GNPs and SDS http://dx.doi.org/10.2139/ssrn.4841699
Boosting the Electrolysis of Monosaccharide-Based Streams in an Anion-Exchange Membrane Cell  
Serrano-Jiménez, J., Osa, A. R. de la, Sánchez, P., Romero, A., & Lucas-Consuegra, A. de. (2024). Boosting the Electrolysis of Monosaccharide-Based Streams in an Anion-Exchange Membrane Cell. Energy & Fuels. https://doi.org/10.1021/ACS.ENERGYFUELS.4C00136
 
GNPs used as the anodic catalyst support https://doi.org/10.1021/acs.energyfuels.4c00136
A High Performing Conjugated Microporous Polymer Cathode for Practical Sodium Metal Batteries Using an Ammoniate as Electrolyte Ruiz-Martinez, D., Grieco, R., Liras, M., Patil, N., & Marcilla, R. (2024). A High Performing Conjugated Microporous Polymer Cathode for Practical Sodium Metal Batteries Using an Ammoniate as Electrolyte. Advanced Energy Materials, 2400857. https://doi.org/10.1002/AENM.202400857 Reduced graphene oxide (rGO) and Single-walled carbon nanotubes (SWCNTs https://doi.org/10.1002/aenm.202400857
Adjustable dielectric and bioactivity characteristics of chitosan-based composites via crosslinking approach and incorporation of graphene  
Ozkan, B. C., & Güner, M. (2024). Adjustable dielectric and bioactivity characteristics of chitosan-based composites via crosslinking approach and incorporation of graphene. International Journal of Biological Macromolecules, 132125. https://doi.org/10.1016/J.IJBIOMAC.2024.132125
 
Graphene nanoplatelets with a purity of 99.9 %, size of 3 nm, surface area of 800 m2/g, and diameter of 1.5 μm) https://doi.org/10.1016/j.ijbiomac.2024.132125
Graphene oxide in palladium nanoparticle (GrafeoPlad): a new class of functional materials Formenti, M., Pagliaro, M., Della Pina, C., & Ciriminna, R. (2024). Graphene oxide in palladium nanoparticle (GrafeoPlad): a new class of functional materials. Green Synthesis and Catalysis. https://doi.org/10.1016/J.GRESC.2024.04.004
 
GO  https://doi.org/10.1016/j.gresc.2024.04.004
Optimizing thermal performance of sodium acetate trihydrate phasechange-materials through synergistic effects of binary graphene nanoadditives for prolonged hot beverage maintenance Kılıçkap Işık, S. (n.d.). Optimizing thermal performance of sodium acetate trihydrate phase-change-materials through synergistic effects of binary graphene nanoadditives for prolonged hot beverage maintenance. Retrieved April 29, 2024, from https://ssrn.com/abstract=4804695
 
Graphene Oxide, Graphene Nanoplatelet, and hexagonal Boron Nitride Nanoparticles https://ssrn.com/abstract=4804695
 
Graphene Oxide (GO)-Based Bioink with Enhanced 3D Printability and Mechanical Properties for Tissue Engineering Applications Seifalian, A. M., Nedelec, J.-M., Kosowska, K., Korycka, P., Jankowska-Snopkiewicz, K., Gierałtowska, J., Czajka, M., Florys-Jankowska, K., Dec, M., Romanik-Chru, A., Małecki, M., Westphal, K., Wszoła, M., & Klak, M. (2024). Graphene Oxide (GO)-Based Bioink with Enhanced 3D Printability and Mechanical Properties for Tissue Engineering Applications. Nanomaterials 2024, Vol. 14, Page 760, 14(9), 760. https://doi.org/10.3390/NANO14090760 GO 2–5 Layer, Dia: 4.5 µm, SA: 420 m2/g https://doi.org/10.3390/NANO14090760
Optimizing thermal performance of sodium acetate trihydrate phasechange-materials through synergistic effects of binary graphene nanoadditives for prolonged hot beverage maintenance  
Kılıçkap Işık, S. (n.d.). Optimizing Thermal Performance of Sodium Acetate Trihydrate Phase-Change-Materials Through Synergistic Effects of Binary Graphene Nanoadditives for Prolonged Hot Beverage Maintenance. https://doi.org/10.2139/SSRN.4804695
 
Graphene Oxide, Graphene Nanoplatelet, and hexagonal Boron Nitride Nanoparticles https://doi.org/10.2139/SSRN.4804695
 
Preparation and characterization of high-performance water-based graphene dispersions for conductive coating on textiles Çaylak, S., Demirel, O., Javadzadehkalkhoran, M., Navidfar, A., Yaşacan, M., Trabzon, L., C¸aylak, S., & Yas¸acan, Y. (2024). Preparation and characterization of high-performance water-based graphene dispersions for conductive coating on textiles. The Journal of The Textile Institute, 1–9. https://doi.org/10.1080/00405000.2024.2343117
 
GNP powder having 3 nm in thickness and 1.5 μm https://doi.org/10.1080/00405000.2024.2343117
A novel approach to detect salbutamol as a doping agent in athletes: A nanoparticle-modified electrode Zhang, Y. (2024). A novel approach to detect salbutamol as a doping agent in athletes: A nanoparticle-modified electrode. Alexandria Engineering Journal, 96, 185–194. https://doi.org/10.1016/J.AEJ.2024.03.087
 
Reduced graphene oxide (RGO; 99%) https://doi.org/10.1016/j.aej.2024.03.087
Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification Kadela, K., Grzybek, G., Kotarba, A., & Stelmachowski, P. (2024). Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification. ACS Applied Materials and Interfaces. https://doi.org/10.1021/ACSAMI.4C01226/ASSET/IMAGES/LARGE/AM4C01226_0007.JPEG Graphene nanoplatelets (GNPs), diameter of 30 μm, a surface area of 135 m2 g–1 with a thickness of 5 nm, and a conductivity in the range of 1.1 and 1.6 × 103 S m–1. https://doi.org/10.1021/acsami.4c01226
Nanographene oxide modified fiber reinforced cementitious composites: Thermomechanical behaviour, environmental analysis and microstructural characterization Yildirim, P., Erdem, S., & Uysal, M. (2024). Nanographene oxide modified fiber reinforced cementitious composites: Thermomechanical behaviour, environmental analysis and microstructural characterization. Ceramics International. https://doi.org/10.1016/J.CERAMINT.2024.03.304 nanographene oxide (NGO) https://doi.org/10.1016/j.ceramint.2024.03.304
Incorporation of Graphene Nanoplatelets into Fiber-Reinforced Polymer Composites in the Presence of Highly Branched Waterborne Polyurethanes Xu, C.-A., Ay¸se, A., Durmu¸s-Sayar, D., Tansan, M., Gçe Çinko-Çoban, T. ˘, Serttan, D., Dizman, B., Yildiz, M., & Ünal, S. (2024). Incorporation of Graphene Nanoplatelets into Fiber-Reinforced Polymer Composites in the Presence of Highly Branched Waterborne Polyurethanes. Polymers 2024, Vol. 16, Page 828, 16(6), 828. https://doi.org/10.3390/POLYM16060828 Graphene nanoplatelets (purity: 99.9%) (GNPs) with 3 nm of thickness, 1.5 μ diameter, and 800 m2/g specific surface area https://doi.org/10.3390/polym16060828
Improving mechanical behavior of adhesively bonded composite joints by incorporating reduced graphene oxide added polyamide 6,6 electrospun nanofibers Yeke, M., Barisik, M., Tanoğlu, M., Erdal Ulaşlı, M., Nuhoğlu, K., Esenoğlu, G., Martin, S., Türkdoğan, C., İplikçi, H., Aktaş, E., Dehneliler, S., & Erdem İriş, M. (2024). Improving mechanical behavior of adhesively bonded composite joints by incorporating reduced graphene oxide added polyamide 6,6 electrospun nanofibers. Composite Structures, 337, 118026. https://doi.org/10.1016/J.COMPSTRUCT.2024.118026 rGO- product code NG01RGO0101 https://doi.org/10.1016/j.compstruct.2024.118026
Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach Demir, Z., Sungur, B., Bayram, E. et al. Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach. Discover Nano 19, 33 (2024). https://doi.org/10.1186/s11671-024-03977-y The commercial graphene https://doi.org/10.1186/s11671-024-03977-y
Mechanical properties of a carbon fiber reinforced epoxy resin composite improved by integrating multi-walled carbon nanotubes and graphene nanoplatelets Yuksel E, Eksik O, Haykiri-Acma H, Yaman S. Mechanical properties of a carbon fiber reinforced epoxy resin composite improved by integrating multi-walled carbon nanotubes and graphene nanoplatelets. Journal of Composite Materials. 2024;58(7):911-921. doi:10.1177/00219983241230740 MWCNT and graphene nanoparticles
https://doi.org/10.1177/00219983241230740
Investigation of a Photovoltaic–Thermal Solar Dryer System with Double-Pass Solar Air Collectors and Absorber Surfaces Enhanced with Graphene Nanoparticles Öztürk, M., Yüksel, C. & Çiftçi, E. Investigation of a Photovoltaic–Thermal Solar Dryer System with Double-Pass Solar Air Collectors and Absorber Surfaces Enhanced with Graphene Nanoparticles. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08717-z graphene nanomaterial https://doi.org/10.1007/s13369-024-08717-z
Assimilation, Digestive Enzyme Activities, and Body Mass in Acheta domesticus

Seyed Alian, R., Flasz, B., Kędziorski, A., Majchrzycki, Ł., & Augustyniak, M. (2024). Concentration- and Time-Dependent Dietary Exposure to Graphene Oxide and Silver Nanoparticles: Effects on Food Consumption and Assimilation, Digestive Enzyme Activities, and Body Mass in Acheta domesticus. Insects, 15(2), 89. https://doi.org/10.3390/INSECTS15020089/S1
 
Graphene oxide (GO) https://doi.org/10.3390/insects15020089
İndüksiyonla sıcak işlemin Si3N4 ve grafen takviyeli Al6061 matrisli kompozitlerin mekanik ve tribolojik özelliklerine olan etkisi ŞENEL, M. C., TAŞKIN, A., DEMİR, M., & GÜRBÜZ, M. (2023). İndüksiyonla sıcak işlemin Si3N4 ve grafen takviyeli Al6061 matrisli kompozitlerin mekanik ve tribolojik özelliklerine olan etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(3), 1567–1582. https://doi.org/10.17341/GAZIMMFD.1226420 Al6061, Si3N4 ve grafen nano tabaka tozları https://doi.org/10.17341/gazimmfd.1226420
Reduced Graphene Oxide Modified Enzyme Inhibition-Based Biosensor System for Detection of Paraoxon as a Nerve Agent Simulant Yildirim-Tirgil, N., & Ozel, M. T. (2024). Reduced Graphene Oxide Modified Enzyme Inhibition-Based Biosensor System for Detection of Paraoxon as a Nerve Agent Simulant. Arabian Journal for Science and Engineering, 1–13. https://doi.org/10.1007/S13369-023-08618-7/TABLES/2 Reduced graphene oxide https://doi.org/10.1007/s13369-023-08618-7
Polyethylene Nanocomposites with Carbon Nanofillers: Similarities and Differences and New Insight on Cavitation in Tensile Drawing Rahmanian, V., Galeski, A., & Rozanski, A. (2024). Polyethylene Nanocomposites with Carbon Nanofillers: Similarities and Differences and New Insight on Cavitation in Tensile Drawing. Macromolecules. https://doi.org/10.1021/ACS.MACROMOL.3C01755 Graphene nanoplatelets with 99.9% purity, 2.26 g/cm3 density, and 5 nm thickness and reduced graphene oxide (rGO) with 99.9% purity, 1.7 g/cm3 density, and 0.5–2 nm thickness https://doi.org/10.1021/acs.macromol.3c01755
Investigating heat exchanger tube performance: second law efficiency analysis of a novel combination of two heat transfer enhancement techniques Mertaslan, O.M., Keklikcioglu, O. Investigating heat exchanger tube performance: second law efficiency analysis of a novel combination of two heat transfer enhancement techniques. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-023-12842-6 GnP and Fe3O4 https://doi.org/10.1007/s10973-023-12842-6
Adsorbent Olarak Grafen Oksit Kullanılarak Metal Kaplama Atıksuyunda Nikel (II) Giderimi Akdemi̇r, A., & Cemre KILIÇ, F. (2024). Adsorbent Olarak Grafen Oksit Kullanılarak Metal Kaplama Atıksuyunda Nikel (II) Giderimi. Journal of the Institute of Science and Technology, 14(1), 115–124. https://doi.org/10.21597/JIST.1198627 Grafen Oksit https://doi.org/10.21597/jist.1198627