null

Cellulose Nanocrystal (Nanocrystalline Cellulose,CNC)

(1 review) Write a Review
SKU:
NG01NC0101
Shipping:
Calculated at Checkout
TRUSTED by PROFESSIONALS
PAY LESS, BUY MORE
  • Cellulose Nanocrystal Powder (CNC)
  • Cellulose Nanocrystal Powder (CNC)
  • Cellulose Nanocrystal Powder TEM
€40.00
Frequently bought together:

Description

Cellulose Nanocrystal Price List

25 grams: 40                         
100 grams: 120    
500 grams: 390    
1000 grams: 640    

Contact us for tailored quotes on larger quantities & experience exceptional solutions from our experts.

Cellulose Nanocrystal (Nanocrystalline Cellulose,CNC)

Wide: 10-20 nm, Length: 300-900 nm, Dry powder

Crystalline Nanocellulose is cellulose in crystalline form, composed of nanosized cellulose fibrils. These submicroscopic particles, known as nanocellulose, have several features such as high strength, electro-magnetic response, large surface area, etc. There is a wide range of CNC application in different fields. We are glad to provide Nanocrystalline Cellulose with low price and high quality. 

Technical Properties

Appearance (Color) White/off white
Appearance (Form) Spray Dried powder (<6.0% moisture)
Average Particle Size 10-20 nm wide, 300-900 nm length
Cellulose Crystallinity (XRD) 92%
Decomposition Temperature of Crystalline Nanocellulose (TGA in N2) 349 oC
Density 1.49 g/cm3
Bulk Density  0.5-0.8 g/cm3
Particle Size, dispersed powder at 2% (w/w) <150 nm
pH, dispersed powder at 2% (w/w) 5.0-8.0
Conductivity, dispersed powder at 2% (w/w) <350 µS/cm
Viscosity, dispersed powder at 2% (w/w) >5 cP
Shelf Life 4 year

TEM Image of Cellulose Nanocrystal

nanografi-cnc-tem.2-png.jpg

Applications

1. Body Armor Applications

Crystal structure of nanocellulose is consisting from packed array of needle-like crystals. These crystal structures are incredibly tough and their strength value is nearly eight times higher than stainless steel. Therefore, nanocellulose can be perfect building material for the future body armor studies. 

 

2. Flexible Batteries

Generally, separator parts inside batteries made up from thick and stiff material which cannot be used for bendable applications. Instead of these materials, flexible and thin nanocellulose combined with graphene material, flexible battery as the one of the big dream in electrical industry can be produced. 

 

3. Flexible Screens

Nanocellulose is bendable, transparent, light and strong material therefore it can easily take place of the plastic or glass. In the future, nanocellulose will be one of the best material for bendable screen studies.

4. Filters

Nanocellulose can be used to filter and purify many types of liquids such as purifying saltwater to be drinkable, trapping dangerous chemicals in cigarette and filtering out blood cell during transfusion. 

 

5. Absorbent Aerogels

When the nanocellulose are mixed with the aerogel foam, incredibly porous and adsorbent material can be obtained that could make strong and light wound-dressing and tampons.

6. Fuel Efficient Cars

Nanocellulose can be obtained by algae and actually, this is quite cheap production method. Therefore, it will be possible to use it in serious bulk materials. In the cars, components from stuff to interior trim will be produced from the light composites reinforced with nanocellulose. By this way, decrease in the weight of the components will save the fuel consumption of the cars.

7. Biofuel

During the production of nanocellulose by algae, it is possible to obtain biofuel at the same time by changing the DNA of the helpful bugs.
Result of these process actually will not produce real nanocellulose material, but it will bring into useful by product.

FAQ

FAQ About Cellulose Nanocrystal

1) What method is used for the production of nanocrystals?

Nanocrystals are produced by sulfuric acid hydrolysis.

2) Are any binders used during production?

No, no binders are used during production.

3) With which chemical is the dispersion of cellulose nanocrystals made? water or ethanol or any other chemical?

Deionized water is the typical medium for dispersion. Tap water is usable but the CNC particle association will be higher. Aprotic solvents such as DMSO, DMF and ethylene glycol are usable, as are mixtures of water with alcohols.

4) Where is CNC extracted from?

Our CNC which is extracted from cellulose, the main building block of trees and plants, is a redispersible powder of uniform acyclic nanometric crystals.

5) Can the CNC product be customized for different applications?

Their size, shape, and charge lead to unique behavior in suspensions. The high chemical reactivity of the crystal surfaces, through hydroxyl and sulfate groups, makes CNC customizable for various applications. The heat stability of the crystals allows high-temperature applications up to 280°C.

6) What is the main chemical group present in the product?

The main chemical group that is present on cellulosic products, including our CNC, is hydroxyl (OH) groups (both secondary and primary). In addition, our CNC contains sulphate (half-ester) groups that are introduced during the acid hydrolysis process.

Our References

ARTICLE REFERENCE PRODUCTS
Novel approaches towards zero waste in rice straw biorefinery for the production of 2 nanocellulose, lignin and silica value added products: Experimental production and 3 techno-economic assessment Ly, T. B., Tran, N. T., Pham, C. D., Nguyen, D. D., Phong, M. T., & Le, P. K. Novel Approaches Towards Zero Waste in Rice Straw Biorefinery for the Production of Nanocellulose, Lignin and Silica Value Added Products: Experimental Production and Techno-Economic Assessment. Lignin and Silica Value Added Products: Experimental Production and Techno-Economic Assessment. Nanocellulose Dry powder, 10-30nm in diameter, 200-500nm in length
The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T Usca, Ü. A. (2023). The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T. Polymers, 15(23), 4521. CNC nanopowders
A novel label-free electrochemical immunosensor based on DCNC@AgNPs/MXene for the detection of apolipoprotein A-1 in human serum Kareem, F., Rizwan, M., & Ahmed, M. U. (2023). A novel label-free electrochemical immunosensor based on DCNC@ AgNPs/MXene for the detection of apolipoprotein A-1 in human serum. Electrochimica Acta, 143536. Cellulose nanocrystal (<100 nm wide)
Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films Stouten, J., Cao, H., Pich, A., & Bernaerts, K. V. (2023). Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films. ACS Applied Materials & Interfaces. Cellulose nanocrystals (CNC, length: 300–900 nm, width: 10–20 nm
An autonomous biodegradable hygroscopic seed-inspired soft robot for visual humidity sensing Mariani, S., Cecchini, L., Pugno, N. M., & Mazzolai, B. (2023). An autonomous biodegradable hygroscopic seed-inspired soft robot for visual humidity sensing. Materials & Design, 112408. The CNC
Effect of Incorporating Carbon- and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive Al-Zu'bi, M., Anguilano, L., & Fan, M. Effect of Incorporating Carbon-and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive. Available at SSRN 4511640. CNF, silica nanoparticles, cellulose nanocrystals, Montmorillonite (MMT) nanoclay and graphite
Development electrically conductive PAAm/Alg/CNC/rGO/PANI hydrogel composites and investigation their bioelectronic properties Oruç, S., Boztepe, C., & Zengin, R. (2023). Development electrically conductive PAAm/Alg/CNC/rGO/PANI hydrogel composites and investigation their bioelectronic properties. Materials Today Communications, 36, 106540. Crystalline Nano Cellulose (CNC, Dia:10–20 nm, L:300–600 nm)
Selülozik katkıların sürdürülebilir 3D beton üretiminde kullanımının incelenmesi Karoğlu, A. (2023). Selülozik katkıların sürdürülebilir 3D beton üretiminde kullanımının incelenmesi (Master's thesis, Konya Teknik Üniversitesi). Selüloz nanokristal
Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals Tserpes, K., Lagkousi, S., Tourountzi, E., & Floros, G. (2023, June). Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals. In Journal of Physics: Conference Series (Vol. 2526, No. 1, p. 012056). IOP Publishing. Graphene NanoPlatelets (GNPs) and Cellulose NanoCrystals (CNCs)
Micro-scale viscosity measurements of different thermotropic and lyotropic classes of liquid crystals by using ferrofluid inclusions Chandrasekar, V., Lu, J. R., & Dierking, I. (2023). Micro-scale viscosity measurements of different thermotropic and lyotropic classes of liquid crystals by using ferrofluid inclusions. Journal of Molecular Liquids, 383, 122178. The CNC
Effect of using Al2O3 / TiO2 hybrid nanofluids on improving the photovoltaic performance Murtadha, T. K. (2023). Effect of using Al2O3/TiO2 hybrid nanofluids on improving the photovoltaic performance. Case Studies in Thermal Engineering, 47, 103112. Graphene, fullerene and carbon nanotubes
Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico-chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging Fakraoui, O., Ghorbel, N., Noirel, C., Royaud, I., Arous, M., Ayadi, Z., & Kallel, A. (2023). Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico‐chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging. Journal of Applied Polymer Science, e54024. Cellulose nanocrystals and Cellulose nanofibers 
Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry Hernández-López, D., Chicangana-Cifuentes, J., Ojeda-Morales, Y., Larios-López, L., & Martínez-Ponce, G. (2023). Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry. Cellulose, 1-13. The cellulose nanocrystals
Carbon nanotubes and silver nanoparticles modification of PVDF membranes for improved seawater desalination in direct contact membrane distillation Mpala, T. J., Richards, H., Etale, A., Mahlangu, O. T., & Nthunya, L. N. (2023). Carbon nanotubes and silver nanoparticles modification of PVDF membranes for improved seawater desalination in direct contact membrane distillation. Frontiers in Membrane Science and Technology, 2, 1165678. CNCs
Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids Murtadha, T. K. Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids. Available at SSRN 4401383. Graphene, fullerene and carbon nanotubes
Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform Francesconi, S., Ronchetti, R., Camaioni, E., Giovagnoli, S., Sestili, F., Palombieri, S., & Balestra, G. M. (2023). Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. Plants, 12(6), 1223. CNC
Synthesis of Ferromagnetic Nanocomposites from Nanocrystalline Cellulose and Characterization as an Adsorbent to Remove Lead in the Water Van Nguyen, S., & Lee, B. K. (2023). Multifunctional food packaging polymer composites based on polyvinyl alcohol/cellulose nanocrystals/apple peel extract. Cellulose, 30(3), 1697-1716. Cellulose nanocrystals
Improvement of polyvinyl alcohol/casein blend film properties by adding cellulose nanocrystals Sahin, D., Aksoy, P., Ucpinar Durmaz, B., & Aytac, A. (2023). Improvement of polyvinyl alcohol/casein blend film properties by adding cellulose nanocrystals. Journal of Vinyl and Additive Technology. Cellulose NC
4D Printing of Humidity-Driven Seed Inspired Soft Robots Cecchini, L., Mariani, S., Ronzan, M., Mondini, A., Pugno, N. M., & Mazzolai, B. (2023). 4D Printing of Humidity‐Driven Seed Inspired Soft Robots. Advanced Science, 10(9), 2205146. Core fiber was composed by CNC 5%
Poliakrilamid ve Tutunum Kimyasallarıyla Desteklenen Nanofibrillenmiş Selülozun Geri Dönüştürülmüş Atık Kağıtların Mekanik/Fiziksel Özellikleri Üzerine Etkisi Tozluoğlu, A. (2023). Effect of Nanofibrillated Cellulose Reinforced with Polyacrylamide and Retention Chemicals on the Mechanical/Physical Properties of Recycled Waste Papers. J. Anatolian Env. and Anim. Sciences, 8(4), 742-748. https://doi.org/10.35229/jaes.1385598 Nanofibrillenmiş selüloz (CNF-%2 w/w)
Development of nanocomposites for the ply-drop regions of glass fiber reinforced polymer (GFRP) composite structures Savaş, D. (2023). Development of nanocomposites for the ply-drop regions of glass fiber reinforced polymer (GFRP) composite structures. https://open.metu.edu.tr/handle/11511/107774 fCNT, CNF, and nanoclay
A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-Ti3C2Tx@ZrO2 nano framework for the detection of ovalbumin Kareem, F., Mohd-Naim, N. F., & Ahmed, M. U. (2023). A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-Ti3C2Tx@ ZrO2 nano framework for the detection of ovalbumin. International Journal of Biological Macromolecules, 128657. Cellulose nanofiber (10–20 nm wide, 2–3 μm length)
Materiales para apantallamiento electromagnético. Control de tamaño y forma de la porosidad en Aerogeles de grafeno y nanotubos de carbono Álvarez Robledo, M. (2023). Materiales para apantallamiento electromagnético. Control de tamaño y forma de la porosidad en Aerogeles de grafeno y nanotubos de carbono. https://doi. org/10.3390/membranes12111146. Cellulose nanofibers
Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects Vidakis, N., Petousis, M., Michailidis, N., David, C., Mountakis, N., Papadakis, V., ... & Argyros, A. (2023). Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects. Bioprinting, e00311. PCL. CNF
Effect of incorporating carbon- and silicon-based nanomaterials on the physico-chemical properties of a structural epoxy adhesive Al-Zu'bi, M., Anguilano, L., & Fan, M. (2023). Effect of incorporating carbon-and silicon-based nanomaterials on the physico-chemical properties of a structural epoxy adhesive. Polymer Testing, 128, 108221. CNF, silica nanopowder, cellulose nanocrystals (CNC), MMT nanoclay and graphite nanopowder.
Reinforcing tissue-engineered cartilage: Nano fibrillated cellulose enhances mechanical properties of Alginate Dialdehyde-Gelatin (ADA-GEL) hydrogel Chayanun, S., Soufivand, A. A., Faber, J., Budday, S., Lohwongwatana, B., & Boccaccini, A. R. Reinforcing tissue‐engineered cartilage: Nano fibrillated cellulose enhances mechanical properties of Alginate Dialdehyde‐Gelatin (ADA‐GEL) hydrogel. Advanced Engineering Materials. Nano  fibrillated  cellulose  (NFC)  from  cotton
Techno-Economic Assessment of Peruvian Stipa Ichu Microfibres by Steam Explosion Ramos Nazario, V., Parada Quinayá, C., Alvan, M. J., & Barreda, E. F. (2023). Techno-Economic Assessment of Peruvian Stipa Ichu Microfibres by Steam Explosion. Journal of Natural Fibers, 20(2), 2248388. Nanofibrillated cellulose (cellulose nanofibril)
Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose Janik, W., Nowotarski, M., Ledniowska, K., Biernat, N., Abdullah, Shyntum, D. Y., ... & Dudek, G. (2023). Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. International Journal of Molecular Sciences, 24(17), 13205. Nanofibrillated cellulose (10–20 nm wide, 2–3 µm length)
Effect of Incorporating Carbon- and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive Al-Zu'bi, M., Anguilano, L., & Fan, M. Effect of Incorporating Carbon-and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive. Available at SSRN 4511640. CNF, silica nanoparticles, cellulose nanocrystals, Montmorillonite (MMT) nanoclay and graphite
Lightweight Nanostructures of Cellulose Nanofibers and Ti3C2Tx MXenes for Their Application in Electromagnetic Interference Shielding Álvarez, M., Santos, X., Fest, A., Sánchez, D. E., Baselga, J., & Pozuelo, J. (2023). Lightweight Nanostructures of Cellulose Nanofibers and Ti3C2T x MXenes for Their Application in Electromagnetic Interference Shielding. ACS Applied Engineering Materials.  Cellulose nanofibrils (CNFs) 
Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions Ateş, S., & Aydın, E. B. Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions. Journal of Applied Polymer Science, e54348. Graphene nanoplatelet (99.9%, size 5 nm, dia 7 μm) and CNF (purity: >96%, diameter 190–590 nm) 
Biomedical resin reinforced with Cellulose Nanofibers (CNF) in VAT photopolymerization (VPP) Additive Manufacturing (AM): The effect of filler loading and process control parameters on Critical Quality Indicators (CQIs) Vidakis, N., Petousis, M., David, C. N., Sagris, D., & Mountakis, N. (2023). Biomedical resin reinforced with Cellulose Nanofibers (CNF) in VAT photopolymerization (VPP) Additive Manufacturing (AM): The effect of filler loading and process control parameters on Critical Quality Indicators (CQIs). Journal of Manufacturing Processes, 101, 755-769. CNFs
Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect Kuznetsov, N. M., Kovaleva, V. V., Vdovichenko, A. Y., & Chvalun, S. N. (2023). Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect. Colloid Journal, 1-10. Nanocellulose CNF 
Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico-chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging Fakraoui, O., Ghorbel, N., Noirel, C., Royaud, I., Arous, M., Ayadi, Z., & Kallel, A. (2023). Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico‐chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging. Journal of Applied Polymer Science, e54024. Cellulose nanocrystals and Cellulose nanofibers 
Cellulose Nano Fibers Infused Polylactic Acid Using the Process of Twin Screw Melt Extrusion for 3d Printing Applications Bhaganagar, S. (2023). Cellulose Nano Fibers Infused Polylactic Acid Using the Process of Twin Screw Melt Extrusion for 3d Printing Applications. Nanofibrils (CNF)
Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM Vidakis, N., Petousis, M., Mountakis, N., Papadakis, V., & Moutsopoulou, A. (2023). Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM. Journal of the Mechanical Behavior of Biomedical Materials, 142, 105846. Cellulose nanofibers (CNF)
Nanocellulose-reinforced, multilayered poly(vinyl alcohol)-based hydrophobic composites as an alternative sealing film Chou, C. T., Shi, S. C., Chen, T. H., & Chen, C. K. (2023). Nanocellulose-reinforced, multilayered poly (vinyl alcohol)-based hydrophobic composites as an alternative sealing film. Science Progress, 106(1), 00368504231157142. CNF
A Robust Process to Produce Lignocellulosic Nanofibers from Corn Stover, Reed Canary Grass, and Industrial Hemp Pascoli, D. U., Dichiara, A., Gustafson, R., & Bura, R. (2023). A Robust Process to Produce Lignocellulosic Nanofibers from Corn Stover, Reed Canary Grass, and Industrial Hemp. Polymers, 15(4), 937. Cellulose Nanofiber
Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes Acarer, S., Pir, İ., Tüfekci, M., Erkoҫ, T., Öztekin, V., Durak, S. G., ... & Tüfekci, N. (2023). Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes. Heliyon, 9(2). CNF
Deposition-Type Lithium Metal All-Solid-State Batteries: About the Importance of Stack-Pressure Control and the Benefits of Hot Pressing during Initial Cycling Cronau, M., Szabo, M., Renz, D., Duchardt, M., Pescara, L. P., & Roling, B. (2023). Deposition‐Type Lithium Metal All‐Solid‐State Batteries: About the Importance of Stack‐Pressure Control and the Benefits of Hot Pressing during Initial Cycling. Advanced Materials Interfaces, 10(8), 2202475. Carbon nanofibers
Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: Relevant properties for their use as active filter layers de Oliveira Santos, R. P., Hao, J., de Mello Innocentini, M. D., Frollini, E., Junior, H. S., & Rutledge, G. C. (2023). Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: Relevant properties for their use as active filter layers. Separation and Purification Technology, 311, 123358. Dry powder cellulose nanofibrils (CNF)
Biofouling control of thermophilic bacteria in membrane distillation Nthunya, L. N., Mpala, T. J., Etale, A., Mahlangu, O. T., Serepa-Dlamini, M. H., Lopez-Maldonado, E. A., & Richards, H. (2024). Biofouling control of thermophilic bacteria in membrane distillation. Desalination and Water Treatment, 100627. https://doi.org/10.1016/J.DWT.2024.100627 The CNCs
Thermal and heat-sealing properties of polyvinyl alcohol/cellulose nanocrystals-based nanocomposites for food packaging Nguyen, S. Van, Nguyen, T. K., & Lee, B. K. (2024). Thermal and heat-sealing properties of polyvinyl alcohol/cellulose nanocrystals-based nanocomposites for food packaging. Materials Today Communications, 40, 109926. https://doi.org/10.1016/J.MTCOMM.2024.109926  CNCs (diameter of 10–20 nm; length of 300–900 nm; 92 % of crystallinity, in powder form)
Synthesis and properties of transparent PMMA/cellulosenanocomposites prepared by in situ polymerizationin green solvent Sušac, K., Vidović, E., Vrsaljko, D., & Jukić, A. (2024). Synthesis and properties of transparent PMMA/cellulose nanocomposites prepared by in situ polymerization in green solvent. Polymer Composites. https://doi.org/10.1002/PC.28576 Cellulose nanocrystals (average particle size: 10–20 nmwide, 300–900 nm length, crystallinity (XRD): 92%, density1.49 g/cm3, bulk density 0.5–0.8 g/cm3)
Supertough Shape Memory Bionanocomposites of Thermoplastic Vulcanizates Based on PLA- EVA and Cellulose Nanocrystal Aminyan, R., Garmabi, H. & Katbab, A.A. Supertough Shape Memory Bionanocomposites of Thermoplastic Vulcanizates Based on PLA- EVA and Cellulose Nanocrystal. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03309-2 Cellulose nanocrystal (CNC) with the reported diameter range of 10–20 nm and the length of 300–900 nm
Ti3C2Tx MXene/reduced graphene oxide/cellulose nanocrystal-coated cotton fabric electrodes for supercapacitor applications Duygun, İ.K., Bedeloğlu, A. Ti3C2Tx MXene/reduced graphene oxide/cellulose nanocrystal-coated cotton fabric electrodes for supercapacitor applications. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09784-1 Cellulose nanocrystal (diameter of 10–20 nm and length of 300–900 nm)
Capillary-Assisted Printing of Droplets at a Solid-Like Thapa, A., Malinowski, R., Blunt, M. O., Volpe, G., & Forth, J. (n.d.). Capillary-Assisted Printing of Droplets at a Solid-Like Liquid-Liquid Interface. Cellulose nanocrystals (length: 300 - 900 nm, diameter: 10 - 20 nm)
Liquid-Liquid Interface
Mechanical properties of poly-(hydroxybutyrate-covalerate)/natural rubber/cellulose nanocrystal (PHBV/NR/CNC) nanocomposites prepared by using two-roll mill method Lim, K. C., Halim, N. A. S. A., Mahamud, S. N. S., Osman, A. F., Pisal, M. H. M., & Masa, A. (2024). Mechanical properties of poly-(hydroxybutyrate-co-valerate)/natural rubber/cellulose nanocrystal (PHBV/NR/CNC) nanocomposites prepared by using two-roll mill method. AIP Conference Proceedings, 2883(1), 050010. https://doi.org/10.1063/5.0204969 Cellulose Nanocrystal (CNC) (diameter: 10–20 nm, length: 300–900 nm)
Crosslinkable latex-based acrylic adhesives containing functionalized cellulose nanocrystals (fCNCs) Esmaeili, S., & Moghbeli, M. R. (2024). Crosslinkable latex-based acrylic adhesives containing functionalized cellulose nanocrystals (fCNCs). International Journal of Adhesion and Adhesives, 132, 103700. https://doi.org/10.1016/J.IJADHADH.2024.103700 Crystalline nanocellulose (15–20 nm in thickness, 400–900 nm in length
Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms Vidakis, N., Petousis, M., Michailidis, N. et al. Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms. Cellulose (2024). https://doi.org/10.1007/s10570-024-05851-7 CNCs in white spray-dried powder (6.0% moisture, 10–20 nm)
Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology Kovaleva, V.V., Kuznetsov, N.M., Zagoskin, Y.D. et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology. Cellulose (2024). https://doi.org/10.1007/s10570-024-05862-4 NC, CNF
MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics Duygun, İ.K., Bedeloğlu, A. MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics. Appl Nanosci (2024). https://doi.org/10.1007/s13204-024-03034-1 Ti3AlC2 (99%, 325 mesh), LiF (98.5%) and  Cellulose nanocrystal with diameter of 10–20 nm and length of 300–900 nm
Innovative method for rice straw valorization into nanocellulose, lignin and silica Ly, T. B., Tran, N. T. T., Pham, C. D., Nguyen, D. D. B., Mai, P. T., & Le, P. K. (2024). Innovative method for rice straw valorization into nanocellulose, lignin and silica. Bioresource Technology Reports, 25, 101804. https://doi.org/10.1016/J.BITEB.2024.101804 Cellulose Nanocrystal (Nanocrystalline Cellulose,CNC)
Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives Al-Zu’bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549. https://doi.org/10.1016/J.JOBE.2024.108549 Carbon Nanofibers (CNF) (>96 %), Silicon Dioxide (SiO2) Nano powder/Nanoparticles, coated with 2 wt% Silane (97.3+ %), Cellulose Nanocrystals (Nanocrystalline Cellulose, CNC) (92 %), montmorillonite (MMT) Nano clay (99.9 %), Graphite (C) Nano powder/Nanoparticles
Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices Ullah, R., Shah, L. A., & Khan, M. T. (2024). Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices. International Journal of Biological Macromolecules, 129376. https://doi.org/10.1016/J.IJBIOMAC.2024.129376 Cellulose nanocrystal (CNCs)
Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics   Crystalline nanocellulose (CNC, d = 10–20 nm × l = 300–900 nm, NG01NC0101)
Schwaiger, L., Csarman, F., Chang, H., Golten, O., Eijsink, V. G. H., & Ludwig, R. (2024). Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics. ACS Catalysis, 14(2), 1205–1219. https://doi.org/10.1021/ACSCATAL.3C05194/ASSET/IMAGES/LARGE/CS3C05194_0004.JPEG
 
Evaluating the effect of the addition of Nano-cellulose fibers on certain properties of heat-cured acrylic resin denture base material H. Fadhel, M., & N.Safi, I. (2024). Evaluating the effect of the addition of Nano-cellulose fibers on certain properties of heat-cured acrylic resin denture base material. F1000Research 2024 13:529, 13, 529. https://doi.org/10.12688/f1000research.147446.1 Cellulose nanofibers  (CNFs; diameter: 40–80 nm; length: 2–5 μm)
Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology Kovaleva, V.V., Kuznetsov, N.M., Zagoskin, Y.D. et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology. Cellulose (2024). https://doi.org/10.1007/s10570-024-05862-4 NC, CNF
Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives Al-Zu’bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549. https://doi.org/10.1016/J.JOBE.2024.108549 Carbon Nanofibers (CNF) (>96 %), Silicon Dioxide (SiO2) Nano powder/Nanoparticles, coated with 2 wt% Silane (97.3+ %), Cellulose Nanocrystals (Nanocrystalline Cellulose, CNC) (92 %), montmorillonite (MMT) Nano clay (99.9 %), Graphite (C) Nano powder/Nanoparticles
View AllClose

1 Review

  • 5

    CNC

    Posted by Danay Hernández López on 14th Feb 2023

    I am a Ph.D. student in Science (Optics) at the Centro de Investigaciones en Óptica, León Guanajuato. My research project is based on the measurement of optical properties of cellulose nanocristake films by Mueller polarimetry. For this project, my mentor purchased the nanocrystals produced at Nanografi. We are enclosing a paper presented last year at the FiO-LS 2022 conference. https://doi.org/10.1364/FIO.2022.JW4A.84

View AllClose