null

Celloluse Nanocrystal Publication List

ARTICLE REFERNCE PRODUCTS DOI
Novel approaches towards zero waste in rice straw biorefinery for the production of 2 nanocellulose, lignin and silica value added products: Experimental production and 3 techno-economic assessment Ly, T. B., Tran, N. T., Pham, C. D., Nguyen, D. D., Phong, M. T., & Le, P. K. Novel Approaches Towards Zero Waste in Rice Straw Biorefinery for the Production of Nanocellulose, Lignin and Silica Value Added Products: Experimental Production and Techno-Economic Assessment. Lignin and Silica Value Added Products: Experimental Production and Techno-Economic Assessment. Nanocellulose Dry powder, 10-30nm in diameter, 200-500nm in length http://dx.doi.org/10.2139/ssrn.4668030
The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T Usca, Ü. A. (2023). The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T. Polymers, 15(23), 4521. CNC nanopowders https://doi.org/10.3390/polym15234521
A novel label-free electrochemical immunosensor based on DCNC@AgNPs/MXene for the detection of apolipoprotein A-1 in human serum Kareem, F., Rizwan, M., & Ahmed, M. U. (2023). A novel label-free electrochemical immunosensor based on DCNC@ AgNPs/MXene for the detection of apolipoprotein A-1 in human serum. Electrochimica Acta, 143536. Cellulose nanocrystal (<100 nm wide) https://doi.org/10.1016/j.electacta.2023.143536
Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films Stouten, J., Cao, H., Pich, A., & Bernaerts, K. V. (2023). Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films. ACS Applied Materials & Interfaces. Cellulose nanocrystals (CNC, length: 300–900 nm, width: 10–20 nm https://doi.org/10.1021/acsami.3c11657
An autonomous biodegradable hygroscopic seed-inspired soft robot for visual humidity sensing Mariani, S., Cecchini, L., Pugno, N. M., & Mazzolai, B. (2023). An autonomous biodegradable hygroscopic seed-inspired soft robot for visual humidity sensing. Materials & Design, 112408. The CNC https://doi.org/10.1016/j.matdes.2023.112408
Effect of Incorporating Carbon- and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive Al-Zu'bi, M., Anguilano, L., & Fan, M. Effect of Incorporating Carbon-and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive. Available at SSRN 4511640. CNF, silica nanoparticles, cellulose nanocrystals, Montmorillonite (MMT) nanoclay and graphite http://dx.doi.org/10.2139/ssrn.4511640
Development electrically conductive PAAm/Alg/CNC/rGO/PANI hydrogel composites and investigation their bioelectronic properties Oruç, S., Boztepe, C., & Zengin, R. (2023). Development electrically conductive PAAm/Alg/CNC/rGO/PANI hydrogel composites and investigation their bioelectronic properties. Materials Today Communications, 36, 106540. Crystalline Nano Cellulose (CNC, Dia:10–20 nm, L:300–600 nm) https://doi.org/10.1016/j.mtcomm.2023.106540
Selülozik katkıların sürdürülebilir 3D beton üretiminde kullanımının incelenmesi Karoğlu, A. (2023). Selülozik katkıların sürdürülebilir 3D beton üretiminde kullanımının incelenmesi (Master's thesis, Konya Teknik Üniversitesi). Selüloz nanokristal tez
Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals Tserpes, K., Lagkousi, S., Tourountzi, E., & Floros, G. (2023, June). Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals. In Journal of Physics: Conference Series (Vol. 2526, No. 1, p. 012056). IOP Publishing. Graphene NanoPlatelets (GNPs) and Cellulose NanoCrystals (CNCs) doi: 10.1088/1742-6596/2526/1/012056
Micro-scale viscosity measurements of different thermotropic and lyotropic classes of liquid crystals by using ferrofluid inclusions Chandrasekar, V., Lu, J. R., & Dierking, I. (2023). Micro-scale viscosity measurements of different thermotropic and lyotropic classes of liquid crystals by using ferrofluid inclusions. Journal of Molecular Liquids, 383, 122178. The CNC https://doi.org/10.1016/j.molliq.2023.122178
Effect of using Al2O3 / TiO2 hybrid nanofluids on improving the photovoltaic performance Murtadha, T. K. (2023). Effect of using Al2O3/TiO2 hybrid nanofluids on improving the photovoltaic performance. Case Studies in Thermal Engineering, 47, 103112. Graphene, fullerene and carbon nanotubes https://doi.org/10.1016/j.csite.2023.103112
Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico-chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging Fakraoui, O., Ghorbel, N., Noirel, C., Royaud, I., Arous, M., Ayadi, Z., & Kallel, A. (2023). Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico‐chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging. Journal of Applied Polymer Science, e54024. Cellulose nanocrystals and Cellulose nanofibers  https://doi.org/10.1002/app.54024
Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry Hernández-López, D., Chicangana-Cifuentes, J., Ojeda-Morales, Y., Larios-López, L., & Martínez-Ponce, G. (2023). Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry. Cellulose, 1-13. The cellulose nanocrystals https://doi.org/10.1007/s10570-023-05181-0
Carbon nanotubes and silver nanoparticles modification of PVDF membranes for improved seawater desalination in direct contact membrane distillation Mpala, T. J., Richards, H., Etale, A., Mahlangu, O. T., & Nthunya, L. N. (2023). Carbon nanotubes and silver nanoparticles modification of PVDF membranes for improved seawater desalination in direct contact membrane distillation. Frontiers in Membrane Science and Technology, 2, 1165678. CNCs https://doi.org/10.3389/frmst.2023.1165678
Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids Murtadha, T. K. Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids. Available at SSRN 4401383. Graphene, fullerene and carbon nanotubes  http://dx.doi.org/10.2139/ssrn.4401383
Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform Francesconi, S., Ronchetti, R., Camaioni, E., Giovagnoli, S., Sestili, F., Palombieri, S., & Balestra, G. M. (2023). Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. Plants, 12(6), 1223. CNC https://doi.org/10.3390/plants12061223
Synthesis of Ferromagnetic Nanocomposites from Nanocrystalline Cellulose and Characterization as an Adsorbent to Remove Lead in the Water Van Nguyen, S., & Lee, B. K. (2023). Multifunctional food packaging polymer composites based on polyvinyl alcohol/cellulose nanocrystals/apple peel extract. Cellulose, 30(3), 1697-1716. Cellulose nanocrystals https://doi.org/10.21203/rs.3.rs-2639545/v1
Improvement of polyvinyl alcohol/casein blend film properties by adding cellulose nanocrystals Sahin, D., Aksoy, P., Ucpinar Durmaz, B., & Aytac, A. (2023). Improvement of polyvinyl alcohol/casein blend film properties by adding cellulose nanocrystals. Journal of Vinyl and Additive Technology. Cellulose NC https://doi.org/10.1002/vnl.21979
4D Printing of Humidity-Driven Seed Inspired Soft Robots Cecchini, L., Mariani, S., Ronzan, M., Mondini, A., Pugno, N. M., & Mazzolai, B. (2023). 4D Printing of Humidity‐Driven Seed Inspired Soft Robots. Advanced Science, 10(9), 2205146. Core fiber was composed by CNC 5% https://doi.org/10.1002/advs.202205146
Poliakrilamid ve Tutunum Kimyasallarıyla Desteklenen Nanofibrillenmiş Selülozun Geri Dönüştürülmüş Atık Kağıtların Mekanik/Fiziksel Özellikleri Üzerine Etkisi Tozluoğlu, A. (2023). Effect of Nanofibrillated Cellulose Reinforced with Polyacrylamide and Retention Chemicals on the Mechanical/Physical Properties of Recycled Waste Papers. J. Anatolian Env. and Anim. Sciences, 8(4), 742-748. https://doi.org/10.35229/jaes.1385598 Nanofibrillenmiş selüloz (CNF-%2 w/w) https://doi.org/10.35229/jaes.1385598
Development of nanocomposites for the ply-drop regions of glass fiber reinforced polymer (GFRP) composite structures Savaş, D. (2023). Development of nanocomposites for the ply-drop regions of glass fiber reinforced polymer (GFRP) composite structures. https://open.metu.edu.tr/handle/11511/107774 fCNT, CNF, and nanoclay tez
A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-Ti3C2Tx@ZrO2 nano framework for the detection of ovalbumin Kareem, F., Mohd-Naim, N. F., & Ahmed, M. U. (2023). A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-Ti3C2Tx@ ZrO2 nano framework for the detection of ovalbumin. International Journal of Biological Macromolecules, 128657. Cellulose nanofiber (10–20 nm wide, 2–3 μm length) https://doi.org/10.1016/j.ijbiomac.2023.128657
Materiales para apantallamiento electromagnético. Control de tamaño y forma de la porosidad en Aerogeles de grafeno y nanotubos de carbono Álvarez Robledo, M. (2023). Materiales para apantallamiento electromagnético. Control de tamaño y forma de la porosidad en Aerogeles de grafeno y nanotubos de carbono. https://doi. org/10.3390/membranes12111146. Cellulose nanofibers https://doi.org/10.1002/cnma.202200451
Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects Vidakis, N., Petousis, M., Michailidis, N., David, C., Mountakis, N., Papadakis, V., ... & Argyros, A. (2023). Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects. Bioprinting, e00311. PCL. CNF https://doi.org/10.1016/j.bprint.2023.e00311
Effect of incorporating carbon- and silicon-based nanomaterials on the physico-chemical properties of a structural epoxy adhesive Al-Zu'bi, M., Anguilano, L., & Fan, M. (2023). Effect of incorporating carbon-and silicon-based nanomaterials on the physico-chemical properties of a structural epoxy adhesive. Polymer Testing, 128, 108221. CNF, silica nanopowder, cellulose nanocrystals (CNC), MMT nanoclay and graphite nanopowder. https://doi.org/10.1016/j.polymertesting.2023.108221
Reinforcing tissue-engineered cartilage: Nano fibrillated cellulose enhances mechanical properties of Alginate Dialdehyde-Gelatin (ADA-GEL) hydrogel Chayanun, S., Soufivand, A. A., Faber, J., Budday, S., Lohwongwatana, B., & Boccaccini, A. R. Reinforcing tissue‐engineered cartilage: Nano fibrillated cellulose enhances mechanical properties of Alginate Dialdehyde‐Gelatin (ADA‐GEL) hydrogel. Advanced Engineering Materials. Nano  fibrillated  cellulose  (NFC)  from  cotton https://doi.org/10.1002/adem.202300641
Techno-Economic Assessment of Peruvian Stipa Ichu Microfibres by Steam Explosion Ramos Nazario, V., Parada Quinayá, C., Alvan, M. J., & Barreda, E. F. (2023). Techno-Economic Assessment of Peruvian Stipa Ichu Microfibres by Steam Explosion. Journal of Natural Fibers, 20(2), 2248388. Nanofibrillated cellulose (cellulose nanofibril) https://doi.org/10.1080/15440478.2023.2248388
Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose Janik, W., Nowotarski, M., Ledniowska, K., Biernat, N., Abdullah, Shyntum, D. Y., ... & Dudek, G. (2023). Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. International Journal of Molecular Sciences, 24(17), 13205. Nanofibrillated cellulose (10–20 nm wide, 2–3 µm length) https://doi.org/10.3390/ijms241713205
Effect of Incorporating Carbon- and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive Al-Zu'bi, M., Anguilano, L., & Fan, M. Effect of Incorporating Carbon-and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive. Available at SSRN 4511640. CNF, silica nanoparticles, cellulose nanocrystals, Montmorillonite (MMT) nanoclay and graphite http://dx.doi.org/10.2139/ssrn.4511640
Lightweight Nanostructures of Cellulose Nanofibers and Ti3C2Tx MXenes for Their Application in Electromagnetic Interference Shielding Álvarez, M., Santos, X., Fest, A., Sánchez, D. E., Baselga, J., & Pozuelo, J. (2023). Lightweight Nanostructures of Cellulose Nanofibers and Ti3C2T x MXenes for Their Application in Electromagnetic Interference Shielding. ACS Applied Engineering Materials.  Cellulose nanofibrils (CNFs)  https://doi.org/10.1021/acsaenm.3c00177
Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions Ateş, S., & Aydın, E. B. Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions. Journal of Applied Polymer Science, e54348. Graphene nanoplatelet (99.9%, size 5 nm, dia 7 μm) and CNF (purity: >96%, diameter 190–590 nm)  https://doi.org/10.1002/app.54348
Biomedical resin reinforced with Cellulose Nanofibers (CNF) in VAT photopolymerization (VPP) Additive Manufacturing (AM): The effect of filler loading and process control parameters on Critical Quality Indicators (CQIs) Vidakis, N., Petousis, M., David, C. N., Sagris, D., & Mountakis, N. (2023). Biomedical resin reinforced with Cellulose Nanofibers (CNF) in VAT photopolymerization (VPP) Additive Manufacturing (AM): The effect of filler loading and process control parameters on Critical Quality Indicators (CQIs). Journal of Manufacturing Processes, 101, 755-769. CNFs https://doi.org/10.1016/j.jmapro.2023.06.018
Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect Kuznetsov, N. M., Kovaleva, V. V., Vdovichenko, A. Y., & Chvalun, S. N. (2023). Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect. Colloid Journal, 1-10. Nanocellulose CNF  https://doi.org/10.1134/S1061933X23600276
Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico-chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging Fakraoui, O., Ghorbel, N., Noirel, C., Royaud, I., Arous, M., Ayadi, Z., & Kallel, A. (2023). Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico‐chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging. Journal of Applied Polymer Science, e54024. Cellulose nanocrystals and Cellulose nanofibers  https://doi.org/10.1002/app.54024
Cellulose Nano Fibers Infused Polylactic Acid Using the Process of Twin Screw Melt Extrusion for 3d Printing Applications Bhaganagar, S. (2023). Cellulose Nano Fibers Infused Polylactic Acid Using the Process of Twin Screw Melt Extrusion for 3d Printing Applications. Nanofibrils (CNF) tez
Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM Vidakis, N., Petousis, M., Mountakis, N., Papadakis, V., & Moutsopoulou, A. (2023). Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM. Journal of the Mechanical Behavior of Biomedical Materials, 142, 105846. Cellulose nanofibers (CNF) https://doi.org/10.1016/j.jmbbm.2023.105846
Nanocellulose-reinforced, multilayered poly(vinyl alcohol)-based hydrophobic composites as an alternative sealing film Chou, C. T., Shi, S. C., Chen, T. H., & Chen, C. K. (2023). Nanocellulose-reinforced, multilayered poly (vinyl alcohol)-based hydrophobic composites as an alternative sealing film. Science Progress, 106(1), 00368504231157142. CNF https://doi.org/10.1177/00368504231157
A Robust Process to Produce Lignocellulosic Nanofibers from Corn Stover, Reed Canary Grass, and Industrial Hemp Pascoli, D. U., Dichiara, A., Gustafson, R., & Bura, R. (2023). A Robust Process to Produce Lignocellulosic Nanofibers from Corn Stover, Reed Canary Grass, and Industrial Hemp. Polymers, 15(4), 937. Cellulose Nanofiber https://doi.org/10.3390/polym15040937
Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes Acarer, S., Pir, İ., Tüfekci, M., Erkoҫ, T., Öztekin, V., Durak, S. G., ... & Tüfekci, N. (2023). Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes. Heliyon, 9(2). CNF https://doi.org/10.1016/j.heliyon.2023.e13086
Deposition-Type Lithium Metal All-Solid-State Batteries: About the Importance of Stack-Pressure Control and the Benefits of Hot Pressing during Initial Cycling Cronau, M., Szabo, M., Renz, D., Duchardt, M., Pescara, L. P., & Roling, B. (2023). Deposition‐Type Lithium Metal All‐Solid‐State Batteries: About the Importance of Stack‐Pressure Control and the Benefits of Hot Pressing during Initial Cycling. Advanced Materials Interfaces, 10(8), 2202475. Carbon nanofibers https://doi.org/10.1002/admi.202202475
Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: Relevant properties for their use as active filter layers de Oliveira Santos, R. P., Hao, J., de Mello Innocentini, M. D., Frollini, E., Junior, H. S., & Rutledge, G. C. (2023). Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: Relevant properties for their use as active filter layers. Separation and Purification Technology, 311, 123358. Dry powder cellulose nanofibrils (CNF) https://doi.org/10.1016/j.seppur.2023.123358
Biofouling control of thermophilic bacteria in membrane distillation Nthunya, L. N., Mpala, T. J., Etale, A., Mahlangu, O. T., Serepa-Dlamini, M. H., Lopez-Maldonado, E. A., & Richards, H. (2024). Biofouling control of thermophilic bacteria in membrane distillation. Desalination and Water Treatment, 100627. https://doi.org/10.1016/J.DWT.2024.100627 The CNCs https://doi.org/10.1016/j.dwt.2024.100627
Thermal and heat-sealing properties of polyvinyl alcohol/cellulose nanocrystals-based nanocomposites for food packaging Nguyen, S. Van, Nguyen, T. K., & Lee, B. K. (2024). Thermal and heat-sealing properties of polyvinyl alcohol/cellulose nanocrystals-based nanocomposites for food packaging. Materials Today Communications, 40, 109926. https://doi.org/10.1016/J.MTCOMM.2024.109926  CNCs (diameter of 10–20 nm; length of 300–900 nm; 92 % of crystallinity, in powder form) https://doi.org/10.1016/j.mtcomm.2024.109926
Synthesis and properties of transparent PMMA/cellulosenanocomposites prepared by in situ polymerizationin green solvent Sušac, K., Vidović, E., Vrsaljko, D., & Jukić, A. (2024). Synthesis and properties of transparent PMMA/cellulose nanocomposites prepared by in situ polymerization in green solvent. Polymer Composites. https://doi.org/10.1002/PC.28576 Cellulose nanocrystals (average particle size: 10–20 nmwide, 300–900 nm length, crystallinity (XRD): 92%, density1.49 g/cm3, bulk density 0.5–0.8 g/cm3)  https://doi.org/10.1002/pc.28576
Supertough Shape Memory Bionanocomposites of Thermoplastic Vulcanizates Based on PLA- EVA and Cellulose Nanocrystal Aminyan, R., Garmabi, H. & Katbab, A.A. Supertough Shape Memory Bionanocomposites of Thermoplastic Vulcanizates Based on PLA- EVA and Cellulose Nanocrystal. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03309-2 Cellulose nanocrystal (CNC) with the reported diameter range of 10–20 nm and the length of 300–900 nm https://doi.org/10.1007/s10924-024-03309-2
Ti3C2Tx MXene/reduced graphene oxide/cellulose nanocrystal-coated cotton fabric electrodes for supercapacitor applications Duygun, İ.K., Bedeloğlu, A. Ti3C2Tx MXene/reduced graphene oxide/cellulose nanocrystal-coated cotton fabric electrodes for supercapacitor applications. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09784-1 Cellulose nanocrystal (diameter of 10–20 nm and length of 300–900 nm) https://doi.org/10.1007/s10853-024-09784-1
Capillary-Assisted Printing of Droplets at a Solid-Like
Liquid-Liquid Interface
Thapa, A., Malinowski, R., Blunt, M. O., Volpe, G., & Forth, J. (n.d.). Capillary-Assisted Printing of Droplets at a Solid-Like Liquid-Liquid Interface. Cellulose nanocrystals (length: 300 - 900 nm, diameter: 10 - 20 nm)
https://doi.org/10.48550/arXiv.2405.00609
Mechanical properties of poly-(hydroxybutyrate-covalerate)/natural rubber/cellulose nanocrystal (PHBV/NR/CNC) nanocomposites prepared by using two-roll mill method Lim, K. C., Halim, N. A. S. A., Mahamud, S. N. S., Osman, A. F., Pisal, M. H. M., & Masa, A. (2024). Mechanical properties of poly-(hydroxybutyrate-co-valerate)/natural rubber/cellulose nanocrystal (PHBV/NR/CNC) nanocomposites prepared by using two-roll mill method. AIP Conference Proceedings, 2883(1), 050010. https://doi.org/10.1063/5.0204969 Cellulose Nanocrystal (CNC) (diameter: 10–20 nm, length: 300–900 nm) https://doi.org/10.1063/5.0204969
Crosslinkable latex-based acrylic adhesives containing functionalized cellulose nanocrystals (fCNCs) Esmaeili, S., & Moghbeli, M. R. (2024). Crosslinkable latex-based acrylic adhesives containing functionalized cellulose nanocrystals (fCNCs). International Journal of Adhesion and Adhesives, 132, 103700. https://doi.org/10.1016/J.IJADHADH.2024.103700 Crystalline nanocellulose (15–20 nm in thickness, 400–900 nm in length https://doi.org/10.1016/j.ijadhadh.2024.103700
Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms Vidakis, N., Petousis, M., Michailidis, N. et al. Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms. Cellulose (2024). https://doi.org/10.1007/s10570-024-05851-7 CNCs in white spray-dried powder (6.0% moisture, 10–20 nm) https://doi.org/10.1007/s10570-024-05851-7
Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology Kovaleva, V.V., Kuznetsov, N.M., Zagoskin, Y.D. et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology. Cellulose (2024). https://doi.org/10.1007/s10570-024-05862-4 NC, CNF https://doi.org/10.1007/s10570-024-05862-4
MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics Duygun, İ.K., Bedeloğlu, A. MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics. Appl Nanosci (2024). https://doi.org/10.1007/s13204-024-03034-1 Ti3AlC2 (99%, 325 mesh), LiF (98.5%) and  Cellulose nanocrystal with diameter of 10–20 nm and length of 300–900 nm https://doi.org/10.1007/s13204-024-03034-1
Innovative method for rice straw valorization into nanocellulose, lignin and silica Ly, T. B., Tran, N. T. T., Pham, C. D., Nguyen, D. D. B., Mai, P. T., & Le, P. K. (2024). Innovative method for rice straw valorization into nanocellulose, lignin and silica. Bioresource Technology Reports, 25, 101804. https://doi.org/10.1016/J.BITEB.2024.101804 Cellulose Nanocrystal (Nanocrystalline Cellulose,CNC) https://doi.org/10.1016/j.biteb.2024.101804
Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives Al-Zu’bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549. https://doi.org/10.1016/J.JOBE.2024.108549 Carbon Nanofibers (CNF) (>96 %), Silicon Dioxide (SiO2) Nano powder/Nanoparticles, coated with 2 wt% Silane (97.3+ %), Cellulose Nanocrystals (Nanocrystalline Cellulose, CNC) (92 %), montmorillonite (MMT) Nano clay (99.9 %), Graphite (C) Nano powder/Nanoparticles https://doi.org/10.1016/j.jobe.2024.108549
Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices Ullah, R., Shah, L. A., & Khan, M. T. (2024). Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices. International Journal of Biological Macromolecules, 129376. https://doi.org/10.1016/J.IJBIOMAC.2024.129376 Cellulose nanocrystal (CNCs) https://doi.org/10.1016/j.ijbiomac.2024.129376
Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics
Schwaiger, L., Csarman, F., Chang, H., Golten, O., Eijsink, V. G. H., & Ludwig, R. (2024). Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics. ACS Catalysis, 14(2), 1205–1219. https://doi.org/10.1021/ACSCATAL.3C05194/ASSET/IMAGES/LARGE/CS3C05194_0004.JPEG
 
Crystalline nanocellulose (CNC, d = 10–20 nm × l = 300–900 nm, NG01NC0101) https://doi.org/10.1021/acscatal.3c05194
Evaluating the effect of the addition of Nano-cellulose fibers on certain properties of heat-cured acrylic resin denture base material H. Fadhel, M., & N.Safi, I. (2024). Evaluating the effect of the addition of Nano-cellulose fibers on certain properties of heat-cured acrylic resin denture base material. F1000Research 2024 13:529, 13, 529. https://doi.org/10.12688/f1000research.147446.1 Cellulose nanofibers  (CNFs; diameter: 40–80 nm; length: 2–5 μm)  https://doi.org/10.12688/f1000research.147446.1
Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology Kovaleva, V.V., Kuznetsov, N.M., Zagoskin, Y.D. et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology. Cellulose (2024). https://doi.org/10.1007/s10570-024-05862-4 NC, CNF https://doi.org/10.1007/s10570-024-05862-4
Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives Al-Zu’bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549. https://doi.org/10.1016/J.JOBE.2024.108549 Carbon Nanofibers (CNF) (>96 %), Silicon Dioxide (SiO2) Nano powder/Nanoparticles, coated with 2 wt% Silane (97.3+ %), Cellulose Nanocrystals (Nanocrystalline Cellulose, CNC) (92 %), montmorillonite (MMT) Nano clay (99.9 %), Graphite (C) Nano powder/Nanoparticles https://doi.org/10.1016/j.jobe.2024.108549