Celloluse Nanocrystal Publication List
ARTICLE | REFERNCE | PRODUCTS | DOI |
Novel approaches towards zero waste in rice straw biorefinery for the production of 2 nanocellulose, lignin and silica value added products: Experimental production and 3 techno-economic assessment | Ly, T. B., Tran, N. T., Pham, C. D., Nguyen, D. D., Phong, M. T., & Le, P. K. Novel Approaches Towards Zero Waste in Rice Straw Biorefinery for the Production of Nanocellulose, Lignin and Silica Value Added Products: Experimental Production and Techno-Economic Assessment. Lignin and Silica Value Added Products: Experimental Production and Techno-Economic Assessment. | Nanocellulose Dry powder, 10-30nm in diameter, 200-500nm in length | http://dx.doi.org/10.2139/ssrn.4668030 |
The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T | Usca, Ü. A. (2023). The Effect of Cellulose Nanocrystal-Based Nanofluid on Milling Performance: An Investigation of Dillimax 690T. Polymers, 15(23), 4521. | CNC nanopowders | https://doi.org/10.3390/polym15234521 |
A novel label-free electrochemical immunosensor based on DCNC@AgNPs/MXene for the detection of apolipoprotein A-1 in human serum | Kareem, F., Rizwan, M., & Ahmed, M. U. (2023). A novel label-free electrochemical immunosensor based on DCNC@ AgNPs/MXene for the detection of apolipoprotein A-1 in human serum. Electrochimica Acta, 143536. | Cellulose nanocrystal (<100 nm wide) | https://doi.org/10.1016/j.electacta.2023.143536 |
Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films | Stouten, J., Cao, H., Pich, A., & Bernaerts, K. V. (2023). Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films. ACS Applied Materials & Interfaces. | Cellulose nanocrystals (CNC, length: 300–900 nm, width: 10–20 nm | https://doi.org/10.1021/acsami.3c11657 |
An autonomous biodegradable hygroscopic seed-inspired soft robot for visual humidity sensing | Mariani, S., Cecchini, L., Pugno, N. M., & Mazzolai, B. (2023). An autonomous biodegradable hygroscopic seed-inspired soft robot for visual humidity sensing. Materials & Design, 112408. | The CNC | https://doi.org/10.1016/j.matdes.2023.112408 |
Effect of Incorporating Carbon- and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive | Al-Zu'bi, M., Anguilano, L., & Fan, M. Effect of Incorporating Carbon-and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive. Available at SSRN 4511640. | CNF, silica nanoparticles, cellulose nanocrystals, Montmorillonite (MMT) nanoclay and graphite | http://dx.doi.org/10.2139/ssrn.4511640 |
Development electrically conductive PAAm/Alg/CNC/rGO/PANI hydrogel composites and investigation their bioelectronic properties | Oruç, S., Boztepe, C., & Zengin, R. (2023). Development electrically conductive PAAm/Alg/CNC/rGO/PANI hydrogel composites and investigation their bioelectronic properties. Materials Today Communications, 36, 106540. | Crystalline Nano Cellulose (CNC, Dia:10–20 nm, L:300–600 nm) | https://doi.org/10.1016/j.mtcomm.2023.106540 |
Selülozik katkıların sürdürülebilir 3D beton üretiminde kullanımının incelenmesi | Karoğlu, A. (2023). Selülozik katkıların sürdürülebilir 3D beton üretiminde kullanımının incelenmesi (Master's thesis, Konya Teknik Üniversitesi). | Selüloz nanokristal | tez |
Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals | Tserpes, K., Lagkousi, S., Tourountzi, E., & Floros, G. (2023, June). Synthesis and characterization of bulk mechanical properties of a bio-based resin filled by graphene nanoplatelets and cellulose nanocrystals. In Journal of Physics: Conference Series (Vol. 2526, No. 1, p. 012056). IOP Publishing. | Graphene NanoPlatelets (GNPs) and Cellulose NanoCrystals (CNCs) | doi: 10.1088/1742-6596/2526/1/012056 |
Micro-scale viscosity measurements of different thermotropic and lyotropic classes of liquid crystals by using ferrofluid inclusions | Chandrasekar, V., Lu, J. R., & Dierking, I. (2023). Micro-scale viscosity measurements of different thermotropic and lyotropic classes of liquid crystals by using ferrofluid inclusions. Journal of Molecular Liquids, 383, 122178. | The CNC | https://doi.org/10.1016/j.molliq.2023.122178 |
Effect of using Al2O3 / TiO2 hybrid nanofluids on improving the photovoltaic performance | Murtadha, T. K. (2023). Effect of using Al2O3/TiO2 hybrid nanofluids on improving the photovoltaic performance. Case Studies in Thermal Engineering, 47, 103112. | Graphene, fullerene and carbon nanotubes | https://doi.org/10.1016/j.csite.2023.103112 |
Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico-chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging | Fakraoui, O., Ghorbel, N., Noirel, C., Royaud, I., Arous, M., Ayadi, Z., & Kallel, A. (2023). Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico‐chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging. Journal of Applied Polymer Science, e54024. | Cellulose nanocrystals and Cellulose nanofibers | https://doi.org/10.1002/app.54024 |
Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry | Hernández-López, D., Chicangana-Cifuentes, J., Ojeda-Morales, Y., Larios-López, L., & Martínez-Ponce, G. (2023). Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry. Cellulose, 1-13. | The cellulose nanocrystals | https://doi.org/10.1007/s10570-023-05181-0 |
Carbon nanotubes and silver nanoparticles modification of PVDF membranes for improved seawater desalination in direct contact membrane distillation | Mpala, T. J., Richards, H., Etale, A., Mahlangu, O. T., & Nthunya, L. N. (2023). Carbon nanotubes and silver nanoparticles modification of PVDF membranes for improved seawater desalination in direct contact membrane distillation. Frontiers in Membrane Science and Technology, 2, 1165678. | CNCs | https://doi.org/10.3389/frmst.2023.1165678 |
Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids | Murtadha, T. K. Effect of Using Co-Mixing Nanofluid on Improving the Photovoltaic Performance in Comparison with that for Al2o3 and Tio2 Nanofluids. Available at SSRN 4401383. | Graphene, fullerene and carbon nanotubes | http://dx.doi.org/10.2139/ssrn.4401383 |
Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform | Francesconi, S., Ronchetti, R., Camaioni, E., Giovagnoli, S., Sestili, F., Palombieri, S., & Balestra, G. M. (2023). Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. Plants, 12(6), 1223. | CNC | https://doi.org/10.3390/plants12061223 |
Synthesis of Ferromagnetic Nanocomposites from Nanocrystalline Cellulose and Characterization as an Adsorbent to Remove Lead in the Water | Van Nguyen, S., & Lee, B. K. (2023). Multifunctional food packaging polymer composites based on polyvinyl alcohol/cellulose nanocrystals/apple peel extract. Cellulose, 30(3), 1697-1716. | Cellulose nanocrystals | https://doi.org/10.21203/rs.3.rs-2639545/v1 |
Improvement of polyvinyl alcohol/casein blend film properties by adding cellulose nanocrystals | Sahin, D., Aksoy, P., Ucpinar Durmaz, B., & Aytac, A. (2023). Improvement of polyvinyl alcohol/casein blend film properties by adding cellulose nanocrystals. Journal of Vinyl and Additive Technology. | Cellulose NC | https://doi.org/10.1002/vnl.21979 |
4D Printing of Humidity-Driven Seed Inspired Soft Robots | Cecchini, L., Mariani, S., Ronzan, M., Mondini, A., Pugno, N. M., & Mazzolai, B. (2023). 4D Printing of Humidity‐Driven Seed Inspired Soft Robots. Advanced Science, 10(9), 2205146. | Core fiber was composed by CNC 5% | https://doi.org/10.1002/advs.202205146 |
Poliakrilamid ve Tutunum Kimyasallarıyla Desteklenen Nanofibrillenmiş Selülozun Geri Dönüştürülmüş Atık Kağıtların Mekanik/Fiziksel Özellikleri Üzerine Etkisi | Tozluoğlu, A. (2023). Effect of Nanofibrillated Cellulose Reinforced with Polyacrylamide and Retention Chemicals on the Mechanical/Physical Properties of Recycled Waste Papers. J. Anatolian Env. and Anim. Sciences, 8(4), 742-748. https://doi.org/10.35229/jaes.1385598 | Nanofibrillenmiş selüloz (CNF-%2 w/w) | https://doi.org/10.35229/jaes.1385598 |
Development of nanocomposites for the ply-drop regions of glass fiber reinforced polymer (GFRP) composite structures | Savaş, D. (2023). Development of nanocomposites for the ply-drop regions of glass fiber reinforced polymer (GFRP) composite structures. https://open.metu.edu.tr/handle/11511/107774 | fCNT, CNF, and nanoclay | tez |
A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-Ti3C2Tx@ZrO2 nano framework for the detection of ovalbumin | Kareem, F., Mohd-Naim, N. F., & Ahmed, M. U. (2023). A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-Ti3C2Tx@ ZrO2 nano framework for the detection of ovalbumin. International Journal of Biological Macromolecules, 128657. | Cellulose nanofiber (10–20 nm wide, 2–3 μm length) | https://doi.org/10.1016/j.ijbiomac.2023.128657 |
Materiales para apantallamiento electromagnético. Control de tamaño y forma de la porosidad en Aerogeles de grafeno y nanotubos de carbono | Álvarez Robledo, M. (2023). Materiales para apantallamiento electromagnético. Control de tamaño y forma de la porosidad en Aerogeles de grafeno y nanotubos de carbono. https://doi. org/10.3390/membranes12111146. | Cellulose nanofibers | https://doi.org/10.1002/cnma.202200451 |
Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects | Vidakis, N., Petousis, M., Michailidis, N., David, C., Mountakis, N., Papadakis, V., ... & Argyros, A. (2023). Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects. Bioprinting, e00311. | PCL. CNF | https://doi.org/10.1016/j.bprint.2023.e00311 |
Effect of incorporating carbon- and silicon-based nanomaterials on the physico-chemical properties of a structural epoxy adhesive | Al-Zu'bi, M., Anguilano, L., & Fan, M. (2023). Effect of incorporating carbon-and silicon-based nanomaterials on the physico-chemical properties of a structural epoxy adhesive. Polymer Testing, 128, 108221. | CNF, silica nanopowder, cellulose nanocrystals (CNC), MMT nanoclay and graphite nanopowder. | https://doi.org/10.1016/j.polymertesting.2023.108221 |
Reinforcing tissue-engineered cartilage: Nano fibrillated cellulose enhances mechanical properties of Alginate Dialdehyde-Gelatin (ADA-GEL) hydrogel | Chayanun, S., Soufivand, A. A., Faber, J., Budday, S., Lohwongwatana, B., & Boccaccini, A. R. Reinforcing tissue‐engineered cartilage: Nano fibrillated cellulose enhances mechanical properties of Alginate Dialdehyde‐Gelatin (ADA‐GEL) hydrogel. Advanced Engineering Materials. | Nano fibrillated cellulose (NFC) from cotton | https://doi.org/10.1002/adem.202300641 |
Techno-Economic Assessment of Peruvian Stipa Ichu Microfibres by Steam Explosion | Ramos Nazario, V., Parada Quinayá, C., Alvan, M. J., & Barreda, E. F. (2023). Techno-Economic Assessment of Peruvian Stipa Ichu Microfibres by Steam Explosion. Journal of Natural Fibers, 20(2), 2248388. | Nanofibrillated cellulose (cellulose nanofibril) | https://doi.org/10.1080/15440478.2023.2248388 |
Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose | Janik, W., Nowotarski, M., Ledniowska, K., Biernat, N., Abdullah, Shyntum, D. Y., ... & Dudek, G. (2023). Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. International Journal of Molecular Sciences, 24(17), 13205. | Nanofibrillated cellulose (10–20 nm wide, 2–3 µm length) | https://doi.org/10.3390/ijms241713205 |
Effect of Incorporating Carbon- and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive | Al-Zu'bi, M., Anguilano, L., & Fan, M. Effect of Incorporating Carbon-and Silicon-Based Nanomaterials on the Physico-Chemical and the Adhesion Properties of Structural Epoxy Adhesive. Available at SSRN 4511640. | CNF, silica nanoparticles, cellulose nanocrystals, Montmorillonite (MMT) nanoclay and graphite | http://dx.doi.org/10.2139/ssrn.4511640 |
Lightweight Nanostructures of Cellulose Nanofibers and Ti3C2Tx MXenes for Their Application in Electromagnetic Interference Shielding | Álvarez, M., Santos, X., Fest, A., Sánchez, D. E., Baselga, J., & Pozuelo, J. (2023). Lightweight Nanostructures of Cellulose Nanofibers and Ti3C2T x MXenes for Their Application in Electromagnetic Interference Shielding. ACS Applied Engineering Materials. | Cellulose nanofibrils (CNFs) | https://doi.org/10.1021/acsaenm.3c00177 |
Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions | Ateş, S., & Aydın, E. B. Fabrication of 3D-printed graphene/polylactic acid and carbon nanofiber/polylactic acid electrodes: New solvent-free electrochemical activation method for hydrogen evolution reactions. Journal of Applied Polymer Science, e54348. | Graphene nanoplatelet (99.9%, size 5 nm, dia 7 μm) and CNF (purity: >96%, diameter 190–590 nm) | https://doi.org/10.1002/app.54348 |
Biomedical resin reinforced with Cellulose Nanofibers (CNF) in VAT photopolymerization (VPP) Additive Manufacturing (AM): The effect of filler loading and process control parameters on Critical Quality Indicators (CQIs) | Vidakis, N., Petousis, M., David, C. N., Sagris, D., & Mountakis, N. (2023). Biomedical resin reinforced with Cellulose Nanofibers (CNF) in VAT photopolymerization (VPP) Additive Manufacturing (AM): The effect of filler loading and process control parameters on Critical Quality Indicators (CQIs). Journal of Manufacturing Processes, 101, 755-769. | CNFs | https://doi.org/10.1016/j.jmapro.2023.06.018 |
Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect | Kuznetsov, N. M., Kovaleva, V. V., Vdovichenko, A. Y., & Chvalun, S. N. (2023). Natural Electrorheological Fluids Based on Cellulose Particles in Olive Oil: The Filler Size Effect. Colloid Journal, 1-10. | Nanocellulose CNF | https://doi.org/10.1134/S1061933X23600276 |
Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico-chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging | Fakraoui, O., Ghorbel, N., Noirel, C., Royaud, I., Arous, M., Ayadi, Z., & Kallel, A. (2023). Comparative analysis of cellulose nanocrystals and cellulose nanofibrils on the physico‐chemical properties of polyvinyl alcohol/chitosan blend for sustainable food packaging. Journal of Applied Polymer Science, e54024. | Cellulose nanocrystals and Cellulose nanofibers | https://doi.org/10.1002/app.54024 |
Cellulose Nano Fibers Infused Polylactic Acid Using the Process of Twin Screw Melt Extrusion for 3d Printing Applications | Bhaganagar, S. (2023). Cellulose Nano Fibers Infused Polylactic Acid Using the Process of Twin Screw Melt Extrusion for 3d Printing Applications. | Nanofibrils (CNF) | tez |
Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM | Vidakis, N., Petousis, M., Mountakis, N., Papadakis, V., & Moutsopoulou, A. (2023). Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM. Journal of the Mechanical Behavior of Biomedical Materials, 142, 105846. | Cellulose nanofibers (CNF) | https://doi.org/10.1016/j.jmbbm.2023.105846 |
Nanocellulose-reinforced, multilayered poly(vinyl alcohol)-based hydrophobic composites as an alternative sealing film | Chou, C. T., Shi, S. C., Chen, T. H., & Chen, C. K. (2023). Nanocellulose-reinforced, multilayered poly (vinyl alcohol)-based hydrophobic composites as an alternative sealing film. Science Progress, 106(1), 00368504231157142. | CNF | https://doi.org/10.1177/00368504231157 |
A Robust Process to Produce Lignocellulosic Nanofibers from Corn Stover, Reed Canary Grass, and Industrial Hemp | Pascoli, D. U., Dichiara, A., Gustafson, R., & Bura, R. (2023). A Robust Process to Produce Lignocellulosic Nanofibers from Corn Stover, Reed Canary Grass, and Industrial Hemp. Polymers, 15(4), 937. | Cellulose Nanofiber | https://doi.org/10.3390/polym15040937 |
Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes | Acarer, S., Pir, İ., Tüfekci, M., Erkoҫ, T., Öztekin, V., Durak, S. G., ... & Tüfekci, N. (2023). Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes. Heliyon, 9(2). | CNF | https://doi.org/10.1016/j.heliyon.2023.e13086 |
Deposition-Type Lithium Metal All-Solid-State Batteries: About the Importance of Stack-Pressure Control and the Benefits of Hot Pressing during Initial Cycling | Cronau, M., Szabo, M., Renz, D., Duchardt, M., Pescara, L. P., & Roling, B. (2023). Deposition‐Type Lithium Metal All‐Solid‐State Batteries: About the Importance of Stack‐Pressure Control and the Benefits of Hot Pressing during Initial Cycling. Advanced Materials Interfaces, 10(8), 2202475. | Carbon nanofibers | https://doi.org/10.1002/admi.202202475 |
Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: Relevant properties for their use as active filter layers | de Oliveira Santos, R. P., Hao, J., de Mello Innocentini, M. D., Frollini, E., Junior, H. S., & Rutledge, G. C. (2023). Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: Relevant properties for their use as active filter layers. Separation and Purification Technology, 311, 123358. | Dry powder cellulose nanofibrils (CNF) | https://doi.org/10.1016/j.seppur.2023.123358 |
Biofouling control of thermophilic bacteria in membrane distillation | Nthunya, L. N., Mpala, T. J., Etale, A., Mahlangu, O. T., Serepa-Dlamini, M. H., Lopez-Maldonado, E. A., & Richards, H. (2024). Biofouling control of thermophilic bacteria in membrane distillation. Desalination and Water Treatment, 100627. https://doi.org/10.1016/J.DWT.2024.100627 | The CNCs | https://doi.org/10.1016/j.dwt.2024.100627 |
Thermal and heat-sealing properties of polyvinyl alcohol/cellulose nanocrystals-based nanocomposites for food packaging | Nguyen, S. Van, Nguyen, T. K., & Lee, B. K. (2024). Thermal and heat-sealing properties of polyvinyl alcohol/cellulose nanocrystals-based nanocomposites for food packaging. Materials Today Communications, 40, 109926. https://doi.org/10.1016/J.MTCOMM.2024.109926 | CNCs (diameter of 10–20 nm; length of 300–900 nm; 92 % of crystallinity, in powder form) | https://doi.org/10.1016/j.mtcomm.2024.109926 |
Synthesis and properties of transparent PMMA/cellulosenanocomposites prepared by in situ polymerizationin green solvent | Sušac, K., Vidović, E., Vrsaljko, D., & Jukić, A. (2024). Synthesis and properties of transparent PMMA/cellulose nanocomposites prepared by in situ polymerization in green solvent. Polymer Composites. https://doi.org/10.1002/PC.28576 | Cellulose nanocrystals (average particle size: 10–20 nmwide, 300–900 nm length, crystallinity (XRD): 92%, density1.49 g/cm3, bulk density 0.5–0.8 g/cm3) | https://doi.org/10.1002/pc.28576 |
Supertough Shape Memory Bionanocomposites of Thermoplastic Vulcanizates Based on PLA- EVA and Cellulose Nanocrystal | Aminyan, R., Garmabi, H. & Katbab, A.A. Supertough Shape Memory Bionanocomposites of Thermoplastic Vulcanizates Based on PLA- EVA and Cellulose Nanocrystal. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03309-2 | Cellulose nanocrystal (CNC) with the reported diameter range of 10–20 nm and the length of 300–900 nm | https://doi.org/10.1007/s10924-024-03309-2 |
Ti3C2Tx MXene/reduced graphene oxide/cellulose nanocrystal-coated cotton fabric electrodes for supercapacitor applications | Duygun, İ.K., Bedeloğlu, A. Ti3C2Tx MXene/reduced graphene oxide/cellulose nanocrystal-coated cotton fabric electrodes for supercapacitor applications. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09784-1 | Cellulose nanocrystal (diameter of 10–20 nm and length of 300–900 nm) | https://doi.org/10.1007/s10853-024-09784-1 |
Capillary-Assisted Printing of Droplets at a Solid-Like Liquid-Liquid Interface |
Thapa, A., Malinowski, R., Blunt, M. O., Volpe, G., & Forth, J. (n.d.). Capillary-Assisted Printing of Droplets at a Solid-Like Liquid-Liquid Interface. | Cellulose nanocrystals (length: 300 - 900 nm, diameter: 10 - 20 nm) | https://doi.org/10.48550/arXiv.2405.00609 |
Mechanical properties of poly-(hydroxybutyrate-covalerate)/natural rubber/cellulose nanocrystal (PHBV/NR/CNC) nanocomposites prepared by using two-roll mill method | Lim, K. C., Halim, N. A. S. A., Mahamud, S. N. S., Osman, A. F., Pisal, M. H. M., & Masa, A. (2024). Mechanical properties of poly-(hydroxybutyrate-co-valerate)/natural rubber/cellulose nanocrystal (PHBV/NR/CNC) nanocomposites prepared by using two-roll mill method. AIP Conference Proceedings, 2883(1), 050010. https://doi.org/10.1063/5.0204969 | Cellulose Nanocrystal (CNC) (diameter: 10–20 nm, length: 300–900 nm) | https://doi.org/10.1063/5.0204969 |
Crosslinkable latex-based acrylic adhesives containing functionalized cellulose nanocrystals (fCNCs) | Esmaeili, S., & Moghbeli, M. R. (2024). Crosslinkable latex-based acrylic adhesives containing functionalized cellulose nanocrystals (fCNCs). International Journal of Adhesion and Adhesives, 132, 103700. https://doi.org/10.1016/J.IJADHADH.2024.103700 | Crystalline nanocellulose (15–20 nm in thickness, 400–900 nm in length | https://doi.org/10.1016/j.ijadhadh.2024.103700 |
Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms | Vidakis, N., Petousis, M., Michailidis, N. et al. Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms. Cellulose (2024). https://doi.org/10.1007/s10570-024-05851-7 | CNCs in white spray-dried powder (6.0% moisture, 10–20 nm) | https://doi.org/10.1007/s10570-024-05851-7 |
Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology | Kovaleva, V.V., Kuznetsov, N.M., Zagoskin, Y.D. et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology. Cellulose (2024). https://doi.org/10.1007/s10570-024-05862-4 | NC, CNF | https://doi.org/10.1007/s10570-024-05862-4 |
MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics | Duygun, İ.K., Bedeloğlu, A. MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics. Appl Nanosci (2024). https://doi.org/10.1007/s13204-024-03034-1 | Ti3AlC2 (99%, 325 mesh), LiF (98.5%) and Cellulose nanocrystal with diameter of 10–20 nm and length of 300–900 nm | https://doi.org/10.1007/s13204-024-03034-1 |
Innovative method for rice straw valorization into nanocellulose, lignin and silica | Ly, T. B., Tran, N. T. T., Pham, C. D., Nguyen, D. D. B., Mai, P. T., & Le, P. K. (2024). Innovative method for rice straw valorization into nanocellulose, lignin and silica. Bioresource Technology Reports, 25, 101804. https://doi.org/10.1016/J.BITEB.2024.101804 | Cellulose Nanocrystal (Nanocrystalline Cellulose,CNC) | https://doi.org/10.1016/j.biteb.2024.101804 |
Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives | Al-Zu’bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549. https://doi.org/10.1016/J.JOBE.2024.108549 | Carbon Nanofibers (CNF) (>96 %), Silicon Dioxide (SiO2) Nano powder/Nanoparticles, coated with 2 wt% Silane (97.3+ %), Cellulose Nanocrystals (Nanocrystalline Cellulose, CNC) (92 %), montmorillonite (MMT) Nano clay (99.9 %), Graphite (C) Nano powder/Nanoparticles | https://doi.org/10.1016/j.jobe.2024.108549 |
Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices | Ullah, R., Shah, L. A., & Khan, M. T. (2024). Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices. International Journal of Biological Macromolecules, 129376. https://doi.org/10.1016/J.IJBIOMAC.2024.129376 | Cellulose nanocrystal (CNCs) | https://doi.org/10.1016/j.ijbiomac.2024.129376 |
Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics | Schwaiger, L., Csarman, F., Chang, H., Golten, O., Eijsink, V. G. H., & Ludwig, R. (2024). Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics. ACS Catalysis, 14(2), 1205–1219. https://doi.org/10.1021/ACSCATAL.3C05194/ASSET/IMAGES/LARGE/CS3C05194_0004.JPEG |
Crystalline nanocellulose (CNC, d = 10–20 nm × l = 300–900 nm, NG01NC0101) | https://doi.org/10.1021/acscatal.3c05194 |
Evaluating the effect of the addition of Nano-cellulose fibers on certain properties of heat-cured acrylic resin denture base material | H. Fadhel, M., & N.Safi, I. (2024). Evaluating the effect of the addition of Nano-cellulose fibers on certain properties of heat-cured acrylic resin denture base material. F1000Research 2024 13:529, 13, 529. https://doi.org/10.12688/f1000research.147446.1 | Cellulose nanofibers (CNFs; diameter: 40–80 nm; length: 2–5 μm) | https://doi.org/10.12688/f1000research.147446.1 |
Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology | Kovaleva, V.V., Kuznetsov, N.M., Zagoskin, Y.D. et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology. Cellulose (2024). https://doi.org/10.1007/s10570-024-05862-4 | NC, CNF | https://doi.org/10.1007/s10570-024-05862-4 |
Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives | Al-Zu’bi, M., Fan, M., & Anguilano, L. (2024). Near-surface mounted-FRP flexural retrofitting of concrete members using nanomaterial-modified epoxy adhesives. Journal of Building Engineering, 84, 108549. https://doi.org/10.1016/J.JOBE.2024.108549 | Carbon Nanofibers (CNF) (>96 %), Silicon Dioxide (SiO2) Nano powder/Nanoparticles, coated with 2 wt% Silane (97.3+ %), Cellulose Nanocrystals (Nanocrystalline Cellulose, CNC) (92 %), montmorillonite (MMT) Nano clay (99.9 %), Graphite (C) Nano powder/Nanoparticles | https://doi.org/10.1016/j.jobe.2024.108549 |